2024-02-21

Effects of internal heating sources on hydrogen-rich supernova light curves

Speaker: Tatsuya Matsumoto

Abstract:

Core-collapse supernovae (SNe) are caused by the death of massive stars, and their light curves provide a lot of information about the stellar evolution and physical processes of explosions. In particular, the light curves of hydrogen-rich SNe have a characteristic slowly-evolving phase, so-called the plateau phase, whose luminosity and duration are related to the SN parameters such as ejecta mass and energy. Recent observations revealed that some H-rich SNe exhibit evidence for a sustained energy source powering their light curves, resulting in a brighter and/or longer-lasting plateau phase.

We present a semi-analytic light curve model that accounts for the effects of an arbitrary internal heating source such as 56Ni/Co decay, a central engine (millisecond magnetar or accreting compact object), and shock interaction with a dense circumstellar disk.

While a sustained internal power source can boost the plateau luminosity commensurate with the magnitude of the power, the duration of the recombination plateau can typically be increased by at most a factor ∼2−3 compared to the zero-heating case. For a given ejecta mass and initial kinetic energy, the longest plateau duration is achieved for a constant heating rate at the highest magnitude that does not appreciably accelerate the ejecta. This finding has implications for the minimum ejecta mass required to explain particularly long-lasting supernovae, and for confidently identifying rare explosions of the most-massive hydrogen-rich (e.g. population III) stars.