Magneto rotational explosion of a massive star

supported by neutrino heating in full 3DGR simulation and its nucleosynthesis

－Takami Kuroda（TU Darmstadt）
－Moritz Reichert（TU Darmstadt）
－Marius Eichler（TU Darmstadt）
－Almudena Arcones（TU Darmstadt）
－Tomoya Takiwaki（NAOJ）
－Kei Kotake（Fukuoka Univ．）

(1)The standard explosion mechanism Neutrino driven explosion,
 Colgate\&White'66, Bethe\&Wilson'85
 For reviews, Janka'12, Kotake+,'12, Burrows+,'13

~99\% of internal energy is radiated away via neutrinos ($\sim 10^{53} \mathrm{ergs}$)
—> ~10\% energy deposition is enough to explain $E_{\text {exp }} \sim 10^{51}$ ergs

Vartanyan+, '19

Numerical simulations can't fully explain canonical explosion energies

- neutrino-matter interactions?
- resolution problem?
- too short simulation time?
(2)If the magnetic field is strong enough

MHD explosion, • Angular momentum transfer

- Mass ejection by B pressure
- efficient neutrino heating

2D: Ardeljan+,'00, Kotake+,'04, Obergaulinger+,'06,'17, Burrows+,'07, Takiwaki+,'09,

3D: Mikami+, '08;
Mösta+,'14;

Obergaulinger+,'19; SR with M1 neutrino transport (preliminary result)
Newtonian, no neutrino, Polytropic EOS full GR but very simplified neutrino transport

Things still to be explored

- resolution problem->MRI?
- 2D artefacts ->3D non-axisymmeties
- microphysics->neutrino effects

Can the MHD explosion be the r-process site?

* Strong MHD jet can potentially produce the 3rd peak (due to low-Ye ejeta)
* Neutrino radiation significantly influences on the ejecta Ye

BSSN equations (17 variables): 4th order accuracy in space and time

$$
\begin{aligned}
\left(\partial_{t}-\mathcal{L}_{\beta}\right) \tilde{\gamma}_{i j} & =-2 \alpha \tilde{A}_{i j} \\
\left(\partial_{t}-\mathcal{L}_{\beta}\right) \phi & =-\frac{1}{6} \alpha K
\end{aligned}
$$

$$
\left(\partial_{t}-\mathcal{L}_{\beta}\right) \tilde{A}_{i j}=e^{-4 \phi}\left[\alpha\left(R_{i j}-8 \pi \gamma_{i \mu} \gamma_{j \nu} T_{\text {(total) }}^{\mu \nu}-D_{i} D_{j} \alpha\right]^{\operatorname{trf}}+\alpha\left(K \tilde{A}_{i j}-\mathscr{Q}_{\boldsymbol{\chi}}^{l l} \tilde{A}_{j l}\right)\right.
$$

(9)
order accuracy
id

$=-\sqrt{\gamma}\left[S_{0} \partial_{i} \alpha-S_{k} \partial_{i \mu^{\prime}}-2 \alpha S_{k}^{k} \partial_{i} \phi\right.$

$\partial_{t} \sqrt{\gamma} \tau+\partial_{i} \sqrt{\gamma}\left(\tau v^{i}+P\left(v^{i}\right.\right.$
$\quad=\sqrt{\gamma}\left[\alpha K S_{k}^{k} / 3+\alpha e^{-4 \phi}\left(S_{i j}-P \gamma_{i j}\right) A^{i j}\right.$

$$
\begin{equation*}
\left.-S_{i} D^{i} \alpha+\alpha \int d \varepsilon S_{(\varepsilon)}^{\mu} n_{\mu}\right] \tag{11}
\end{equation*}
$$

$\partial_{t}\left(\rho_{*} Y_{e}\right)+\partial_{i}\left(\rho_{*} Y_{e} \nu^{i}\right)=\sqrt{\gamma} \alpha m_{u} \int \frac{d \varepsilon}{\varepsilon}\left(S_{\left(\nu_{e}, \varepsilon\right)}^{\mu}-S_{\left(\bar{T}_{e} \varepsilon\right)}^{\mu}\right) u_{\mu}$,

$$
\begin{equation*}
\partial_{t} B^{i}=\partial_{k}\left(B^{k} v^{i}-B^{i} v^{k}\right) \tag{12}
\end{equation*}
$$

In GRMRHD code, one solves these 3 systems with $\left(26+12 * \mathrm{~N}_{\text {ene }}\right)$ variables satisfying the Hamiltonian, momentum, \& no-monopole constraints

The basic equations for neutrino transport

$T_{\mu \nu}^{\text {neutrino }}=E n_{\mu} n_{\nu}+F_{\mu} n_{\nu}+F_{\nu} n_{\mu}+P_{\mu \nu}$

Shibata+'11, TK+'16
(E, F, P: Oth, 1st, 2nd momenta (in Euler))
advection gravitational redshift/Doppler
$\partial_{i} \sqrt{\gamma} E_{(\varepsilon)}+\partial_{i} \sqrt{\gamma}\left(\alpha F_{(\varepsilon)}^{i}-\beta^{i} E_{(\xi)}\right)+\sqrt{\gamma} \alpha \partial_{\varepsilon}\left(\varepsilon \tilde{M}_{(\varepsilon)}^{\mu} n_{\mu}\right)$ $=\sqrt{\gamma}\left(\alpha P_{(\varepsilon)}^{i j} K_{i j}-F_{(\varepsilon)}^{i} \partial_{i} \alpha-\alpha S_{(\varepsilon)}^{\mu} n_{\mu}\right)$,
and
gravitational source neutrino-matter interaction

$$
\begin{align*}
& \partial_{t} \sqrt{\gamma} F_{(\varepsilon)_{i}}+\partial_{j} \sqrt{\gamma}\left(\alpha P_{(\varepsilon)_{i}}^{j}-\beta^{j} F_{(\varepsilon)_{i}}\right)-\sqrt{\gamma} \alpha \partial_{\varepsilon}\left(\varepsilon \tilde{M}_{(e)}^{\mu} \gamma_{i \mu}\right) \\
& \quad=\sqrt{\gamma}\left[-E_{(\varepsilon)} \partial_{i} \alpha+F_{(\varepsilon)_{j}} \partial_{i} \beta^{j}+(\alpha / 2) P_{(\xi)}^{j k} \partial_{i} \gamma_{j k}+\alpha S_{(\xi)}^{\mu} \gamma_{i \mu}\right] \tag{5}
\end{align*}
$$

TK+,'16
The Opacity Set Included in this Study and their References

Process	Reference	Summarized In
$n \nu_{e} \leftrightarrow e^{-} p$	Bruenn (1985), Rampp \& Janka (2002)	Appendix A.1
$p \overline{\bar{v}}_{e} \leftrightarrow e^{+} n$	Bruenn (1985), Rampp \& Janka (2002)	Appendix A.1
$\nu_{e} A \leftrightarrow e^{-} A^{\prime}$	Bruenn (1985), Rampp \& Janka (2002)	Appendix A.1
$\nu p \leftrightarrow \nu p$	Bruenn (1985), Rampp \& Janka (2002)	Appendix A. 2
$\nu n \leftrightarrow \nu n$	Bruenn (1985), Rampp \& Janka (2002)	Appendix A.2
$\nu A \leftrightarrow \nu A$	Bruenn (1985), Rampp \& Janka (2002)	Appendix A.2
$\nu e^{ \pm} \leftrightarrow \nu e^{ \pm}$	Bruenn (1985)	Appendix A.3
$e^{-} e^{+} \leftrightarrow \nu \bar{\nu}$	Bruenn (1985)	Appendix A.4
$N N \leftrightarrow \nu \bar{\nu} N N$	Hannestad \& Raffelt (1998)	Appendix A.5

Numerical setups

- 20Msun model (WHWO7)
- dx~458m@center, ~3.2km@R=100km
- Basic neutrino opacities based on Bruenn'85 (same as TK+,'18)
- Nene= 12 bins ($1<\varepsilon<300 \mathrm{MeV}$)
- 3 models(R0B00, R1B00, R1B12)
- SFHo (Steiner+'13)
- Cylindrical rotational law
$\Omega=\Omega_{0} \frac{R_{0}^{2}}{w^{2}+R_{0}^{2}} \quad \Omega_{0}=1(\mathrm{rad} / \mathrm{s}) \quad\left(\beta_{\mathrm{b}} \sim 1 \%\right)$
- Dipole-like B
$A_{\phi}=\frac{B_{0}}{2} \frac{R_{0}^{3}}{R^{3}+R_{0}^{3}} R \sin \theta \quad B_{0}=10^{12} \mathrm{G} \quad\left(\beta_{\text {mag, } \mathrm{b}} \sim 1 \%\right)$
- CT method for divB=0
- XC40 @ NAOJ

TK, Kei Kotake, T. Takiwaki, \& F.-K. Thielemann 2018, MNRAS Letter

Rotating magnetized model (R1B12)

$\mathrm{Tpb}=55 \mathrm{~ms}$

100 ms

250ms

| 1 B | 2
$\mathrm{Tpb}=250.873(\mathrm{~ms})$
Volume
Var: Entiopy

R1B12
Tob-250.878(ms)
Volumo

2D-3D comparison

Entropy

$\log \left(P_{\text {mag }} / P_{\text {gas }}\right)$

Non-magnetized models

Energetics

Shock evolution
Diagnostic energy

Rotation and Magnetic fields facilitate the explosion

Neutrino heated? or magneto-driven?

- Rotation \& B increase $M_{\text {gain }}$ and Qdot

> Pole

- For MHD model
- Equatorial expansion is supported by v-heating $\tau_{\text {adv }} / \tau_{\text {heat }}>1$
- Prompt bipolar outflow is due to magnetic field $\tau_{\text {adv }} / \tau_{\text {neat }}<1$
- Later by \mathbf{v}-heating $\tau_{\mathrm{adv}} / \tau_{\text {heat }}>1$

Neutrino emission (angle dependence)

bar-ve

Neutrino emission (angle dependence)

Ejecta structure

Ejecta structure

Selection rule

(1)Ye and entropy unchanged (and low peak temperature), such that the progenitor composition does not change much
(2) Ye unchanged, but high peak temperature, with explosive nucleosynthesis
(3) Ye once <0.45 and at the end >0.38
(4) Ye always <0.45 and entropy <15
(5) Ye always <0.45 and entropy >15
(6)T9It8: final temperature (averaged in time of $\sim 10 \mathrm{~ms}$) decreases below 8 GK .

Scattering in S-Ye plane

Ejecta distribution

Ejecta distribution

Nucleosynthesis (1st peak)

Nucleosynthesis (weak 2nd peak)

Nucleosynthesis (2nd + weak 3rd peak)

Nucleosynthesis

Nucleosynthesis (1st peak)

Summary

1. SN simulations are becoming more realistic (full GR, 3D effects, sophisticated neutrino opacities) \longrightarrow more reliable messages from SNe (GWs, neutrinos, and heavy elements)
2. In MHD model, the polar/equatorial explosion is boosted mainly by B/neutrinos.
3. 2nd \& weak 3rd peak elements can be produced with significant B/neutrino effects depending on the trajectory
4. Temporal modulation in neutrinos reflecting the SASI motions.
