

Gamow-Teller transitions from ⁵⁶Ni

Masaki Sasano

Uesaka spin-isospin laboratory

RIKEN Nishina Center

M. Sasano,^{1,2} G. Perdikakis,^{1,2} R.G.T. Zegers,^{1,2,3} Sam M. Austin,^{1,2} D. Bazin,¹ B. A. Brown,^{1,2,3} C. Caesar,⁴ A. L. Cole,⁵ J.M. Deaven,^{1,2,3} N. Ferrante,⁶ C.J. Guess,^{7,2} G. W. Hitt,⁸ H. Honma,⁹ R. Meharchand,^{1,2,3} F. Montes,^{1,2} J. Palardy,⁶ A. Prinke,^{1,2,3} L. A. Riley,⁶ H. Sakai,¹⁰ M. Scott,^{1,2,3} A. Stolz,¹ T. Suzuki,^{11,12,13} L. Valdez,^{1,2,3} and K. Yako¹⁴ ¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA ² Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, USA ³Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ⁴GSI Darmstadt, Helmholtz-Zentrum für Schwerionenforschung, D-64291, Darmstadt, Germany ⁵Physics Department, Kalamazoo College, Kalamazoo, MI 49006, USA ⁶Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA ⁷Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA ⁸Khalifa University of Science, Technology & Research, 127788 Abu Dhabi, UAE ⁹Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan ¹⁰RIKEN Nishina Center, Wako, 351-0198, Japan ¹¹Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan ¹²Center for Nuclear Study, University of Tokyo, Hirosawa, Wako-shi, Saitama 351-0198, Japan ¹³National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan ¹⁴Department of Physics, University of Tokyo, Tokyo, 113-0033. Japan

Charge-Exchange (CE) reactions: a tool for studying Gamow-Teller strengths

Gamow-Teller transition $\Delta T=1, \Delta S=1, \Delta L=0$ induced by $\sigma t t \pm$ strength : B(GT) \rightarrow allowed β -decay CE reaction at intermediate energies, e.g. (p,n) reaction

$$\left(\frac{d\sigma}{d\Omega}(q=0)\right)_{(p,n)} = \hat{\sigma} B(GT)$$

Weak reactions in astrophysics

Core-Collapse (Type II) Supernovae

• Collapse of massive star at the end of burning cycle electron-capture (EC) on Fe-region nuclei

- reduces electron pressure
- neutrinos by EC carry away energy from the star
 → collapse accelerates
- affects the mass interior to the shockwave

Thermonuclear (Type Ia) Supernovae

- source of large fraction of Iron group nuclei in the universe
- thermonuclear explosions of accreting white dwarfs in binary systems Not well understood.

- ECs strongly affect the flame propagation after ignition
- If ECs are well understood \rightarrow models can be much better constrained

Key ingredient : Electron capture in Fe-region nuclei

Weak reactions (electron capture) in supernovae

N (Neutron Number)

Electron capture in ⁵⁶Ni

One of the important cases in core collapse super novae of massive stars (Phys. Rev. Lett. 86, 1678 (2001))

B(GT) measured by the (p,n) reaction is directly connected with the EC rate.

⁵⁶Ni is a key nucleus in Fe region

⁵⁶Ni (Z=N=28)

- independent particle model
 → ⁵⁶Ni is doubly magic
- Large p-n residual interaction
 → ⁵⁶Ni is not magic
- GT strength from ⁵⁶Ni

→ key to bench mark nuclear model used for weak rates in the Fe region

Experimentally, challenging!

f7/2 70% in ⁵⁶Ni (GXPF1A, KB3G) (e.g., Honma et al., Phys. Rev. C 69, 034335 (2004))

Existing CE studies using RI beams

inverse kinematics

³⁴P(⁷Li,⁷Be+gamma)
 (Zegers et al., Phys. Rev. Lett. 104, 212504 (2010)
 ¹²B(⁷Li,⁷Be+gamma)¹²Be
 (Meharchand et al., to be published)

¹H(¹⁴Be,¹³B+**n**)n (Satou et al., Phys. Lett. B 697 (2011) 459-462.

 → Only several low-lying states and light nuclei
 (For high Ex/heavier nuclei, to analyze the residue decays becomes difficult)

Our method

Missing mass spectroscopy by the detection of the recoil neutron

Advantages

- target can be thick (neutron recoil)
 - → high luminosity even with unstable beams with low intensities
- All kinematic information from measurement of the neutron (two-body kinematics)
 - → simple measurement and analysis, compared to invariant mass method
- Heavy fragment serves as tag for CE reaction
 → branching ratio of the particle decay

Can be applied to any mass region and to any excitation energy

⁵⁶Ni beam production and experiment overview

Set up of LENDA

Low Energy Neutron Detector Array (LENDA) neutron detection

Plastic scintillator 24 bars 2.5x4.5x30cm 150 keV < E_n < 10 MeV $\Delta E_n \sim 5\% \quad \Delta \theta_n < 2^\circ$ efficiency 15-40% Flight path : 1 m

Excitation energy & reaction scattering angles

Liquid Hydrogen target "proton " target 65 mg/cm² (~7 mm) ~3.5 cm diameter

T=20 K ~1 atm

Double differential cross sections

Two bumps at 3 and 5 MeV with forward angle peaks ($GT:\Delta L=0$)

A bump around 12 MeV

- \rightarrow Peak around 10-12 degrees
- \rightarrow Spin dipole (Δ L=1)

States without proton emission

- ightarrow Peak at most backward angle
- \rightarrow Higher multipoles (Δ L>1)

→ Multipole decomposition

Multipole decomposition analysis

GTR and SDR are extracted!

Calibration of the proportionality

$$\left(\frac{d\sigma}{d\Omega}(q=0)\right)_{(p,n)} = \hat{\sigma} B(GT)$$

Mixed : GT of B(GT)=0.267 (Aysto et al., Phys. Lett. B138, 369 (1984)) Fermi of B(F)=1

Fraction of GT cross section : 0.51+-0.03 using $\hat{\sigma}_{GT} / \hat{\sigma}_{F} = 4.0 \pm 0.2$

Taddeucci et al., Nucl. Phys. A469, 125 (1987).

GT unit cross section of 55 Co(p,n) at 110 MeV/u \rightarrow 3.2 +- 0.5 mb/sr

→ Consistent with 3.5+-0.2 mb/sr for ⁵⁸Ni(p,n) at 120 MeV

GT strengths from ⁵⁶Ni(p,n) at 110 MeV/u

- Use the extracted Δ L=0 component in combination with unit cross section to extract Gamow-Teller strength [B(GT)].
- Compare with large-scale shell-model calculations

GXPF1A: Honma et al. : constrained by data in full pf-shell KB3G: Poves et al. : less constraints – used in database for weak rates for astrophysical purposes.

Difference between KB3G and GXPF1A:

- KB3G weaker spin-orbit and pn-residual interactions
- KB3G lower level density

A preliminary result of ⁵⁵Co

Astrophysical applications in RIKEN

Summary and conclusion

- A new experimental technique to measure GT strengths (any Ex & (A,Z))
- The first case: ⁵⁶Ni (nuclear structure/astrophysics)
 → KB3G (used in astrophysical data base) : x
 GXPF1A : O
- Preliminary results for ⁵⁵Co(p,n)⁵⁵Ni
- A lot of applications;

EC/beta-decays, Neutral weak currents, R-process (GT + first forbidden)

Backups

Weak reactions (electron capture) in supernovae

N (Neutron Number)

Resolution effect

Spectra at forward angles are smeared by using simulated energy resolution.

GT component dominates the region below 8 MeV. \rightarrow Scale the spectrum before smearing

Event selection in S800

Applications of CE reactions

Nuclear Astrophysics

- weak rates for late stellar evolution
- neutrino processes
- specific weak interactions for novae

Nuclear structure

- Spin-isospin response
- test of structure models up to high excitation energies
- Shell evolution
- Double beta decay

Isovector giant resonances

- macroscopic properties of nuclear matter (neutron-skin, EOS)
- microscopic descriptions high in the continuum

Background due to n-knockout/frag. reactions

Background subtraction

Largest source of background : N-knockout/frag. background Modeled by using ${}^{56}Ni+p \rightarrow {}^{53}Co + 2p + n$ (scaled)

Second one : Random background caused by coincidence with preceding beam pulse

Smallest one :

Background due to the cell of the target is small

→ liquid hydrogen target system is important!

Resolution effect

Spectra at forward angles are smeared by using simulated energy resolution.

Neutron energy spectra

Background subtraction

Largest source of background : N-knockout/frag. background Modeled by using ${}^{56}Ni+p \rightarrow {}^{53}Co + 2p + n$ (scaled)

Second one : Random background caused by coincidence with preceding beam pulse

Smallest one :

Background due to the cell of the target is small

→ liquid hydrogen target system is important!