2024-01-24

Carbon Isotope Fractionation of Complex Organic Molecules in Star-Forming Cores

Speaker: Ryota Ichimura

Abstract:

Recent high-resolution and sensitivity ALMA observations have unveiled the carbon isotope ratios (12C/13C) of Complex Organic Molecules (COMs) in a low-mass protostellar source. To understand the 12C/13C ratios of COMs, we investigated the carbon isotopic fractionation of COMs from prestellar cores to protostellar cores with a gas-grain chemical network model. We confirmed that in the prestellar phase, the 12C/13C ratios of small molecules are bimodal: CO and species formed from CO (e.g.,CH3OH) are slightly enriched in 13C compared to the local ISM (by ∼ 10 %), while those from C and C+ are depleted in 13C owing to isotope exchange reactions. COMs are formed from the simple species on grain surface, and thus basically inherit the bimodality of 12C/13C. In the protostellar phase, COMs are formed on the grain surface and in the hot gas (> 100 K) and have different 12C/13C from those in the prestellar phase. We additionally incorporate reactions between gaseous atomic C and H2O ice or CO ice on the grain surface to form H2CO ice or C2O ice suggested by recent laboratory studies. The direct C-atom addition reactions open pathways to form 13C-enriched COMs from atomic C and CO ice. We find that these direct C-atom addition reactions mitigate isotope fractionation, and the model with the direct C-atom addition reactions better reproduces the observations than our base model. Our calculations also show that cosmic-ray ionization rates affect the 12C/13C ratios of COMs.