High-speed fluid dynamics in magnetic reconnection in a low-beta plasma

Seiji ZENITANI

National Astronomical Observatory of Japan

Motivation

- Magnetic reconnection expels a fast outflow jet at the upstream Alfvén speed
- How does the jet interact with an external medium?

Key parameter

$$\beta \equiv \frac{p_{\text{gas}}}{p_{\text{mag}}} = \frac{8\pi p}{B^2}$$

Typical velocity

$$\beta \equiv \frac{p_{\text{gas}}}{p_{\text{mag}}} = \frac{8\pi p}{B^2}$$
 $\frac{1}{\beta} \sim \left(\frac{c_A}{c_s}\right)^2 \sim \left(\frac{V}{c_s}\right)^2 \sim \mathcal{M}^2$

Sound speed

Typical Mach number

Branches of fluid dynamics

- Incompressible fluids
- Compressible fluid dynamics
- High-speed fluid dynamics
 - Adiabatic effects
 - Shocks
 - Shock-shock interaction

Various shocks!

Extensive analysis
 on shock conditions
 (Minimum variance
 analysis; MVA-B)

TABLE I. Rankine–Hugoniot analysis. The subscripts 1 and 2 denote the upstream and downstream quantities. The locations (x,z) in the simulation domain [see also Fig. 1(b)], the shock normal vector \hat{n} , the shock velocity v_{sh} , the angle between \hat{n} and the upstream magnetic field B_1 , the upstream plasma beta, flow Mach numbers to fast, intermediate (Alfvén), and slow-mode speeds, and the temperature ratio. The asterisk sign (*) indicates unreliable results (see Sec. III F). The letter (S) indicates a slow shock, (F) is a fast shock, and (U) is unclassified.

No.	Location	(n_x, n_z)	$v_{ m sh}$	$ heta_{BN} $	$\boldsymbol{\beta}_1$	\mathcal{M}_{f1}	\mathcal{M}_{i1}	\mathcal{M}_{s1}	\mathcal{M}_{f2}	\mathcal{M}_{i2}	\mathcal{M}_{s2}	T_2/T_1	
1	(40.0, 1.35)	(-0.03, 1.00)	0.0	86.3	0.22	0.06	0.98	2.49	0.04	0.69	0.69	2.72	(S) Petschek shock
2	(55.0, 1.75)	(-0.04, 1.00)	-0.013	86.3	0.098	0.06	0.88	3.22	0.04	0.58	0.58	4.58	(S) Petschek shock
3	(61.2, 0)	(-1.00, 0.00)	-0.40	90	303	1.41			0.77			1.38	(F) Reverse shock
4	(51.0, 6.0)	(1.00, -0.04)	0.31	9.4	0.12	0.41	0.42	1.34	0.33	0.34	0.78	1.33	(S) Postplasmoid vertical shock
5	(80.0, 8.4)	(-0.18, 0.98)	-0.06	86.5	0.16	0.05	0.85	2.47	0.03	0.56	0.65	2.54	(S) Outer shell
6	(110.0, 6.5)	(0.24, 0.97)	0.19	84.9	0.21	0.06	0.76	1.99	0.05	0.53	0.64	2.06	(S) Outer shell
7	(101.2, 10.0)	(0.94, 0.33)	0.54	25.2	0.23	0.43	0.49	1.15	0.39	0.44	0.87	1.15	(S) Forward vertical shock
8	(110.0, 1.5)	(-0.06, -1.00)	0.10	87.8	1.1	0.12	4.5*	6.5*	0.12	3.9*	4.0*	1.55	(U) Intermediate shock?
9	(120.0, 1.9)	(0.13, -0.99)	0.13	87.1	0.49	0.09	2.0*	3.8*	0.08	1.7*	1.9*	1.86	(U) Slow shock?
10	(120.9, 1.0)	(0.64, -0.77)	0.50	46.8	2.63	1.22	3.00	3.40	0.88	2.66	3.06	1.18	(F) Oblique shock

Normal shock: Analogy to airfoil

Subsonic

- MHD slow shock

Shock diamond

Supersonic nozzle problem

Plasmoid frame
Plasma sheet

• (a) Over-expanded flow

9)

• (b) Under-expanded flow

Shapiro 1953

Shock diamonds in aeronautics

BBC online http://www.bbc.com/future/story/20130701-flying-the-worlds-fastest-plane

Shock diamonds in video game

Shock diamonds in astrophysics

Hidden shock-diamonds

 Under-expanded shockdiamonds at the shock crossing point

- Triple-point structure is even more complicated (Zenitani 2015 PoP)
 - Contact discontinuity
 - Slow expansion fan

A digital catalog of the plasmoid structure

- In high Mach number, low-β regime, reconnection system is dominated by shocks
- This regime has long been unexplored!

$$\frac{1}{\beta} \sim \left(\frac{c_A}{c_s}\right)^2 \sim \left(\frac{V}{c_s}\right)^2 \sim \mathcal{M}^2$$

- 1. Petschek slow shock (Petschek 1964)
- 2. outer shell = slow shock (Ugai 1995)
- 3. intermediate shock (Abe & Hoshino 2001) or slow shock (Saito et al. 1995)
- 4a fast shock (Forbes & Priest 1983)
- 4b oblique shock & Mach disk (Takasao et al. 2015)
- looptop front (Ugai 1987)
- tangential discontinuity
- 7. post-plasmoid vertical slow shock (Zenitani et al. 2010)
- 8. outer vertical slow shock (Zenitani & Miyoshi 2011)
- 9. fast-mode wave front (Saito et al. 1995)
- 10.overexpanded shock-diamonds (Zenitani et al. 2010)
- 11.underexpanded shock-diamonds (Zenitani 2015)
- 12.contact discontinuity (Zenitani & Miyoshi 2011, 2015)
- 13.contact discontinuity (Zenitani 2015)
- 14.contact discontinuity (Zenitani 2015)
- 15.slow expansion wave front (Zenitani 2015)

- A. reconnection inflow
- B. outflow jet
- C. post-plasmoid reverse flow
- D. internal flow
- E. flapping jet (KH instability)

OpenMHD code

- Simple, Scalable, and Shock-capturing MHD code
 - TVD Runge=Kutta method
 - TVD MUSCL scheme + HLLD solver
 - Hyperbolic divergence cleaning
 - Parallel-IO
- Search "OpenMHD" without a space

http://th.nao.ac.jp/MEMBER/zenitani/openmhd-e.html

Summary

- We have investigated the shock structure of a reconnection-plasmoid system
- In high Mach-number, low-β regime, several new structures are found:
 - Recompression shock
 - Over-expanded shock diamonds at the front
 - Under-expanded shock diamonds inside the jet
- They are outcomes of <u>high-speed</u> (compressible) fluid effects : $\mathcal{M}>1$
- Code publicly available
- References:
 - Zenitani, *Phys. Plasmas* **22**, 032114 (2015)
 - Zenitani & Miyoshi, *Phys. Plasmas* **18**, 022105 (2011)

Thank you for your attention. Have a safe return trip!

