ST15-08-D2-PM2-P-017

Kinetic aspects of the ion current layer in a reconnection outflow exhaust

Seiji ZENITANI

National Astronomical Observatory of Japan I. Shinohara (JAXA/ISAS), T. Nagai (Titech), T. Wada (NAOJ)

S. Zenitani, I. Shinohara, T. Nagai, and T. Wada, *Physics of Plasmas* 20, 092120 (2013).

Ion velocity distribution function

- (1) global Speiser ions
- (2) local Speiser ions
- (3) trapped ions

(Local-type) Speiser orbit

40.7

6.4

1.0

 X/λ_0

Lottermoser et al. 1998 JGR Nakamura et al. 1998 JGR

Lyons & Speiser 1985 JGR Speiser 1965 JGR

B₇

Regular orbits

Nongyrotropic regime!!

Geotail 2007-05-05 event

Summary

- We have examined an ion velocity distribution function in the reconnection outflow:
 - (1) Global Speiser ions
 - (2) Local Speiser ions
 - (3) Trapped ions
 - Regular orbits in the chaos theory
 - First demonstration in PIC simulation
- Plasma ideal condition
 - Easily violated in the \varkappa <1 regime
 - Particles no longer gyrate
- Local-Speiser motion explains
 - Sub-Alfvénic ion flow
 - Super-Alfvénic electron jet
- Better understanding of the outflow region from the viewpoint of particle motion

Chaos in reconnection

Reconnection in chaos

Magnetic reconnection is a fascinating multi-scale process!