

Relativistic Magnetic Reconnection Overview

Seiji ZENITANI NAOJ

Ackn: Masahiro Hoshino (U. Tokyo), Michael Hesse, Alex Klimas (NASA/GSFC)

Outline

- 0. Tutorial & Introduction
- 1. MHD results
 - RRMHD simulations
 - Two-fluid simulations
- 2. Kinetic results
 - 2D reconnection
 - Another 2D instability: Drift-Kink instability
 - 3D evolution
 - Weibel instability
- 3. Summary

0. Tutorial & Introduction

Magnetic reconnection

Earth's Magnetosphere

- MHD-scale phenomena
- Re-configuration of magnetic field lines
- Release of magnetic energy to plasma energy

 $\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} \neq \boldsymbol{0}$

Kinetic reconnection

- Collisionless reconnection is fast: $R \sim 0.1$
- It looks different from MHD fast (Petschek) reconnection
- What makes reconnection fast?
 - Electron dynamics (Hesse+ 1999) vs Hall effects (Mandt+ 1994)

Magnetic reconnection in relativistic astrophysical settings

- Electron-positron pairs (and few baryons)
- Strong magnetic fields
- Relativity plays a role
 - + radiation, pair creation ...

Magnetosphere model

Spitkovsky 2006

Current status of relativistic reconnection research (2014Q1)			
 Theories have been discussed over decades MHD theories Many works came out after 2011 (Crab flare) 			
Blackman & Field 1994			Kinetic (PIC) simulations
Lyutikov & Uzdensky 2003	MHD simulations	Two-fluid	Zenitani & Hoshino 2001-2008
Lyubarsky 2005	Watanabe &	simulations	Jaroschek+ 2004 Jaroschek & Hoshino 2009
Tenbarge+ 2010 Comisso & Asenjo 2014	Yokoyama 2008 Zenitani+ 2010 Takahashi+ 2011 Mizuno 2013 Takamoto 2013 Baty+ 2013	Zenitani+ 2009	Liu+ 2011 Sironi & Spitkovsky 2011, 2014 Cerutti+ 2012-2014 Kagan+ 2013
Basic properties are under debate	 Ideal for global modeling 	Meso-scale evolution	Fast evolutionParticle acceleration

1. Fluid simulations

Resistive Relativistic MHD (RRMHD) eqs.

Watanabe & Yokoyama 2006, Komissarov 2007

Continuity $\partial_t(\gamma\rho) + \nabla \cdot (\rho \boldsymbol{u}) = 0$ $\partial_t (\boldsymbol{m} + \boldsymbol{E} \times \boldsymbol{B}) + \nabla \cdot \left((p + \frac{B^2 + E^2}{2}) \boldsymbol{I} \right)$ Momentum +wuu - BB - EE = 0 $\partial_t (\mathcal{E} + \frac{B^2 + E^2}{2}) + \nabla \cdot (\boldsymbol{m} + \boldsymbol{E} \times \boldsymbol{B}) = 0$ Energy Maxwell eqs. $\partial_t \boldsymbol{B} + \nabla \times \boldsymbol{E} + \nabla \psi = 0$ $\partial_t \boldsymbol{E} - \nabla imes \boldsymbol{B} + \nabla \phi = -\boldsymbol{j}$ Virtual potentials to fix div B, E $\partial_t \psi + \nabla \cdot \boldsymbol{B} = -\kappa \psi$ (Munz '00, Dedner '02) $\partial_t \phi + (\nabla \cdot \boldsymbol{E} - \rho_c) = -\kappa \phi$ Charge conservation $\partial_t \rho_c + \nabla \cdot \boldsymbol{j} = 0$ $\gamma \left(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} - (\boldsymbol{E} \cdot \boldsymbol{v}) \boldsymbol{v} \right) = \eta (\boldsymbol{j} - \rho_c \boldsymbol{v})$ Ohm's law four velocity enthalpy momentum energy $\mathcal{E} = \gamma^2 w - p$ $w = \rho + 4p$ $\boldsymbol{m} = \gamma w \boldsymbol{u}$ $\boldsymbol{u} = \gamma \boldsymbol{v}$

• Magnetization parameter

$$\sigma_{\varepsilon} = \frac{B_0^2}{4\pi\gamma^2 w} \left(\approx \frac{8}{5} \frac{\mathcal{E}_{EM}}{\mathcal{E}_{fluid}}\right)$$

Relativistic Alfvén speed

$$\gamma_{jet}v_{jet} \approx \gamma_A c_A = \sqrt{\sigma_e}$$

Relativistic Sweet-Parker reconnection Reconnection rate 5 $S^{-0.5}$ \mathcal{R} u_y 20 0.01 $\sigma_0 = 20$ $\sigma_0 = 10$ æ $\sigma_0 = 5$ 100m 5 $\sigma_0 = 2.5$ Takahashi+ 2011 100 R_M 0.5 S S 2 N 4 20 0.1 $\begin{array}{l} L=320 \ \delta \\ L=80 \ \delta \\ L=20 \ \delta \end{array}$ 2.18 t_A, σ = reconnection rate $\langle v_{R}/c_{A} \rangle$ 0 S, -1/2 -× Ш 0 0.01 Transition to the plasmoid regime 10000 S_L 100 Takamoto 2013

Shock, shock, and shocks...

Relativistic two-fluid model of pair plasmas

aр

 \sim

Zenitani+ 2009a,b Barkov+ 2014

Continuity (x 2)
$$\frac{\partial D_p}{\partial t} = -\nabla \cdot (n_p u_p)$$

Momentum (x 2) $\frac{\partial m_p}{\partial t} = -\nabla \cdot \left(\frac{w_p u_p u_p}{c^2} + \delta_{ij} p_p\right)$ e^+-e^- interaction
 $+\gamma_p n_p q_p (E + \frac{v_p}{c} \times B) - \tau_{fr} n_p n_e (u_p - u_e)$
Energy (x 2) $\frac{\partial \mathcal{E}_p}{\partial t} = -\nabla \cdot (\gamma_p w_p u_p) + \gamma_p n_p q_p (v_p \cdot E) - \tau_{fr} n_p n_e c^2 (\gamma_p - \gamma_e)$
Faraday's law $\frac{\partial B}{\partial t} = -c\nabla \times E$
Ampére's law $\frac{\partial E}{\partial t} = c\nabla \times B - 4\pi j$
Out-of-plane
Ohm's law $E_y \approx \frac{-\langle v_z \rangle B_x}{c} + \frac{m \langle v_z \rangle}{q_p} \frac{\partial h_p u_{y,p}}{\partial z} + \frac{\eta_{eff}}{\gamma_p} j_y - \frac{m v_z}{q_p} \frac{\partial^2 h_p u_{y,p}}{\partial z^2}$
Fluid inertia Frictional resistivity
four velocity specific enthalpy
 $u = \gamma v$ $w_s = e_s + p_s = n_s mc^2 + [\Gamma/(\Gamma - 1)]p_s$

Features #1: narrower opening angle

ullet

Semi-relativistic (sigma=0.4)

Opening angle becomes narrower in the ultrarelativistic regime (Lyubarsky 2005) $V'_A \propto B'_z = B_z / \gamma_{out}$ $\theta_{rela} \sim \frac{\theta_{nonrela}}{\gamma_{out}^2} \sim$ $rac{ heta_{nonrela}}{\gamma_{\scriptscriptstyle A}^2}$

Features #2: faster reconnection speed

• Normalized rate :
$$\mathcal{R} = \frac{cE_y}{c_{A,in}B_{x,in}} \approx \frac{v_{in}}{v_{out}}$$

Features #3: enthalpy-flux dominated outflow

- Enthalpy flux (~ internal energy flux) carries outgoing energy
- Plasma pressure balances with the strong upstream magnetic pressure

Relativistic features of PK reconnection

- #1 Narrower opening angle
- #2 Faster reconnection rate $R \sim 0.1-1$
- #3 Enthalpy-flux dominated outflow
- Relativistic enthalpy flux (~internal energy flux) allows larger energy output per cross section

2. Kinetic simulations

Kinetic model: Particle-In-Cell simulation

particle quantities : q, **x, v**

cell properties : $\mathbf{J}, \boldsymbol{\rho}, \mathbf{E}, \mathbf{B}$

- $\cdot~10^{1}\,{\sim}10^{3}$ virtual particles in a cell
 - 1. Solve particle motion

$$egin{aligned} &rac{d}{dt}(m_j\gamma_jm{v}_j)=q_j\Big(m{E}+rac{m{v}_j}{c}im{ imes}m{B}\Big)\ &rac{d}{dt}m{x}_j=m{v}_j, \end{aligned}$$

- · 2. Update J, p
- · 3. Advance EM field (E, B)
- $\cdot\,$ Huge computational cost
- Detail plasma physics
 - \cdot particle acceleration
 - $\cdot\,$ anisotropic distribution function

2D Particle-In-Cell (PIC) simulation

- Fast reconnection and particle acceleration occurs
- Online version: http://th.nao.ac.jp/MEMBER/zenitani/files/reconnection.mov

Large-scale dynamic evolution

• Hard emission spectra (Jaroschek+ 2004, Cerutti+ 2012)

Another 2D problem: Drift-Kink Instability (DKI)

Relativistic Drift-Kink Instability

- A kink-type instability, driven by the electron-positron counter-stream (Zhu & Winglee 1996, Ozaki+ 1996, Pritchett+ 1996)
- Online version: http://th.nao.ac.jp/MEMBER/zenitani/files/RDKI.mov

3D evolution

Zenitani & Hoshino 2008

Growth rates of the competing modes

RX (tearing; acceleration) vs DKI (plasma heating). In the relativistic regime, DKI grows faster.

Field topology effect -- a guide field

• Antiparallel field + Uniform guide field B_v

- Magnetic tension stabilizes DKI
- RX is relatively insensitive

3D evolution with guide field

Summary

- RRMHD, Two-fluid picture
 - Straightforward extension of nonrelativistic MHD reconnection
 - Some differences
 - Narrower exhaust, faster reconnection rate, heat-dominated flow
 - Various shocks!
- Kinetic picture
 - Reconnection (RX) DC particle acceleration
 - Drift Kink instability (DKI) plasma heating
 - 3D evolution mode competition RX vs DKI
 - Guide field changes the winner
 - Weibel instability (WBI) yet another player
- Forefronts
 - Large-scale 3D kinetic evolution
 - Radiation effect
 - GRRMHD: application to BH

Reconnection gallery

MHD theory

Kinetic simulations

Lyubarsky 2005

Successful launch in the 1st decade (2001-2010) A lot more to come in the 2nd decade (2011~)

