Waves and Electron Acceleration in the Separatrix Regions of Magnetic Reconnection

Keizo Fujimoto

Division of Theoretical Astronomy, NAO, Japan

Waves in MRX Region: Obs.

EC (Electron cyclotron: Whistler) Langmuir (plasma oscillation) → Electromagne tic → Electrostatic

1111 & 1111

- Bow Shock

Electron Energetics: Observations

Purpose of This Study

 To understand the generation mechanisms of the waves in the separatrix regions of anti-parallel reconnection using particle-in-cell simulations, and

• To clarify the roles of the waves in reconnection, in particular, in electron acceleration.

Strategy of the PIC Simulation

$$V_{e,out} \sim V_{Ae} = (m_i/m_e)^{1/2} (n_b/n_0)^{-1/2} V_{A0} \propto 1/\sqrt{\beta_e}$$

More realistic parameters m/m_e : 100 \rightarrow 400 n_b/n_0 : 0.2~0.3 \rightarrow 0.04 <u>AMR-PIC</u> Long-time evolution : Periodic \rightarrow Open boundary

N_p: ~ 10¹⁰ Memory:~ 1TB

Wave Activities Around Separatrices

[Fujimoto, GRL, 2014]

6

- Weak waves
- Strong e⁻ acceleration due to double layer
- Intense wave activities

COSP

• Electron heating

Wave Generation Mechanisms

60 Electron (a) 40 >_ __ 20 -20 2 (b) In-plane E Ey E/V_AB₀ 0 -1 ower<mark>l</mark>hybrid -7 46.8 51.6 56.5 61.4 37.1 42. 2 0.5 2 B $\mathbf{\Omega}$ 1.5 9d 0/0 1.5 0 γ/ω_{pe} Ц -1 $\sim \omega_{pe}$ 0.5 0.5 -2 -3∟ -2 0 0 2 3 6 8 -1 2 4 0. Ex kλ

Linear analyses $\omega = \omega_r + i\gamma$

Beam-driven whistler instability

Electron-electron 2-stream instability

COSPAR2014@Moscow, Russia

Roles of the Waves

COSPAR2014@Moscow, Russia

Electron Acceleration Mechanism

COSPAR2014@Moscow, Russia

Electron Acceleration Mechanism

Summary [Fujimoto, GRL, 2014]

The generation mechanisms of the waves in the separatrix regions have been identified for anti-parallel reconnection.

Key parameters are realistically low plasma beta.

The waves are responsible for "flat-top" and non-thermal electrons.

The waves are useful to diagnose the electron dynamics in the reconnection region by means of on-going and/or up-coming satellite observations.

Guide-field cases will be investigated as a next step.