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Introduction
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Introduction

Restriction in full particle code: /AN ARSI TR IN
Magnetota” | obe [Birdsall & Langdon, 1995]

T;/Te ~ 4.0, n~0.01 cm~3, §;~0.1, B=230 nT.
(Baumjohann and Treumann, 1997)
Ape = 5.6 x 103 [m]

Grid spacing can be
coarser in the lobe region
than in the plasma sheet.

Central Plasma Sheet

T;,/T. ~ 8.0, n~03cm~3, 3,~20, B=5nT.
(Baumjohann and Paschmann, 1989)
Ape = 3.1 x 102 [m]
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Restriction in full particle code: JANERSCHN TR

[Birdsall & Langdon, 1995]
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AMR

4
Berger and Oliger (1984), Berger and Colella (1989)

v MHD + AMR
Groth et al. (2000)

v PIC + AMR (N-body code)

Villumsen (1989), Jessop et al. (1994), Suisalu and Saar

(1995), Gelato et al. (1997), Kravtsov et al. (1997), Yahagi
and Yoshii (2001)

v EMPIC + AMR
Fujimoto and Machida (2006)



Data Structure

Lo Cells are treated as

‘ Independent units
organized in
refinement trees rather
than elements of arrays,
so that a very flexible
cell hierarchy is
achieved.

The hierarchical cell
structure i1s supported by
a set of pointers, which is
basically same as the
fully threaded tree (FTT)
structure [Khokhlov,
1989].




Basic Equations

® Equation of motion

dvg
dt

— %[E(ws) + vs X B(xs)] (s =1, e)

EZEL—|—ET (VXELZO,V-ETZO),
EL=-V¢, V= —p/eo,

SE . L
L=V xB—jr/eo  (Gr=3j+Vn),

(Charge continuity equation).




Calculation of Electromagnetic Field

EM solver on the
coarsest cells

. 3

Interpolation to the
buffer cells

1 1

EM solver on the
finer cells

Projection of the solution
on the finer cells onto the
— coarsest cells

Buffer cells | | | Refined cells




Mesh Refinement Criteria

Electron Debye length alone is really enough?
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Refinement meshes are
required In the region
where the electron scale
physics Is expected to be
significant.



The Number of Meshes and Simulation Cost

> The number of meshes > Simulation cost

The number of meshes

Simulation cost

96 % of the total simulation time is devoted
to the routines related to the particle data.

In order to perform an efficient
simulation, it is inevitable to reduce
the number of superparticles.




Particle Splitting and Coalescence (Lapenta, 2002)

ds
Mg

<E+63x§)

Conserving through the splitting

Moment on the grids p., J Total charge and
mass Zp.,, Zm Total energy of particles
>mv2/2  Distribution function f(v)

> Wall time

Walltime

q1 = g2, M1 = mo
o = (L1 + ©2)/2
vp = (U1 + 2)/2 |
40 = q1 + 9o Wit AU it AU aric
mo = mj1 + mo




Initial Setting for the Test Simulations

Harris-type current sheet

B,(z) = B, tanh[z/A]
J(2) = J, sech?[z/A]
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Test Simulations in the Non-tearing System
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Linear dispersion of the lower hybrid drift instability

2
w (&
14+ w—i;e
2""52'
+ 5[+ E2(9)] =0
£ = (w— kV})/kv;

[Davidson et al., 1977]
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Test Simulations on Magnetic Reconnection

3D without LHDI
3D with LHDI

In 3D system with the lower hybrid
drift instability (LHDI), the current
density Is enhanced at the center of
the current sheet, which facilitates

the onset of a fast reconnection.
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Tearing and Kink Modes in 3D System

System size: Lx><Ly>Lz = 30.7A1><7.7A1><30.7Al
Maximum resolution: Nx><Ny><Nz = 1024 ><256><1024
m./m, = 25

3D without Kink |
3D with Kink !
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Parallelization Efficiency
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(The test was performed using the FUJITSU HPC2500.)



Summary and Conclusions

We have successfully developed new 2D and 3D electromagnetic
particle code with the adaptive mesh refinement technique.

» Refinement meshes are required not only in the region with small
Debye length, but also in the region where the electron scale
physics Is expected to be significant.

» In order to perform an efficient simulation, it is inevitable to
reduce not only the number of meshes, but also the number of
superparticles.

» Numerical errors associated with cell refinement and particle
coalescence are small.

» The code is checked against the LHDI and Tearing instability.

» The computing performance and efficiency are well enhanced by
parallelizing the code, using the OpenMP and MPI.
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