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Abstract

A linear analysis and 2-1/2 dimensional full particle simulations are performed to

investigate mechanisms of electron heating due to a strong Hall current, which is caused

by a large velocity difference between electrons and ions in the outflow region inside

the diffusion region associated with the magnetic reconnection process. The numerical

solution of the kinetic dispersion relation indicates that the prospective unstable mode

varies according to the electron-ion relative velocity Vd; the kinetic cross-field streaming

instability (KCSI) is dominant when Vd is under the substantial fraction of the electron

thermal velocity ve, while the electron cyclotron drift instability (ECDI) is first excited

for the case where Vd exceeds that critical velocity. The critical drift velocity, where

the peak growth rate of the ECDI exceeds that of the KCSI, decreases as the mass

ratio increases, since the peak growth rate is almost independent of the mass ratio for

the ECDI while it decreases as the mass ratio increases for the KCSI. Our simulation

results show that electrons are heated parallel to the ambient magnetic field when the

KCSI is excited, because they can be easily trapped along the magnetic field line by

the obliquely propagating waves associated with the KCSI. On the other hand, we also

show that electrons are heated in the perpendicular direction due to the trapping by

the perpendicularly propagating waves assciated with the ECDI. In particular, electrons

are quickly heated up to a high temperature when the ECDI is dominant. The electron

heating by the ECDI is, however, ineffective when Vd/ve < 1 because the number of

resonant electrons, which act to dump the waves, is large in this case.

According to observational data obtained by spacecraft, both instabilities are likely

to be excited so that electrons can be heated in either parallel or perpendicular direction

depending on the controlling parameters. The identification of the unstable mode will

be possible by analyzing the frequencies of excited waves observed by spacecraft.



Chapter 1

Introduction

Plasma heating in space and laboratory experiments is one of the long-standing prob-

lems in space physics as well as plasma physics. Magnetic reconnection is, in particular,

believed to play an important role in a fast conversion process of the magnetic energy

to plasma kinetic energy and be responsible for the plasma heating in the plasma sheet

of the Earth. However, the detailed heating mechanism in reconnection is still poorly

understood.

In a collisionless reconnection process, the ideal magnetohydrodynamic (MHD) con-

dition breaks down near the X-type neutral line and the diffusion region develops a

two-scale structure associated with the electron and ion scales, that is, the electron iner-

tial length λe and the ion inertial length λi. Outside the diffusion region both electrons

and ions are frozen-in to the ambient magnetic field and move together. (In this paper

we define the diffusion region as the ion diffusion region otherwise mentioned.) This

implies that the studies in the MHD framework can be applied. Indeed, the studies with

hybrid simulations [e.g., Shay et al., 1998] and full particle simulations [e.g., Hesse et al.,

1999] suggest that the outflow velocity of ions out of the diffusion region never exceed

the Alfvén velocity in the inflow region, as expected by Sweet [1958] and Parker [1963],

who predicted it with the use of a resistive MHD description. Furthermore, this fact is

also confirmed by the observations with the Geotail spacecraft [Nagai et al., 1998]. On

the other hand, inside the diffusion region but outside the electron diffusion region, the

difference in motion between electrons and ions becomes important. Since the inertial

length of ions λi is much larger than that of electrons λe, ions are easily unmagnetized

even when electrons still remain frozen-in to the magnetic field. This difference allows

the electron and ion motion to decouple. In the inflow region, electrons can continue to

accelerate with the E ×B drift motion toward the neutral line until they decouple from
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the magnetic field in the electron diffusion region. Ions, however, have large gyroradii

compared to the scale size of the diffusion region so that they don’t execute the E × B

drift motion. This relative motion produces currents, that is, the Hall current system,

in the vicinity of the X-type neutral line [Sonnerup, 1979]. Sonnerup [1979] first pre-

dicted the presence of the Hall current system associated with the magnetic reconnection

theoretically in which the four current loops resulted in a quadrupole structure in the

out-of-plane (dawn-dusk) magnetic field variations. In the past decade, not a few studies

with hybrid simulations [e.g., Mandt et al., 1994; Hesse and Winske, 1994, 1998; Lin and

Swift, 1996; Nakabayashi and Machida, 1997; Nakamura et al, 1998; Shay et al., 1998,

2001] and full particle simulations [e.g., Tanaka, 1995; Hoshino et al., 1998, 2001a, b;

Hesse et al., 1999] have confirmed the presence of the Hall current system and the asso-

ciated quadrupole magnetic field structure in the reconnection process. In these studies

electrons have been ascertained to play as carriers of the Hall currents. Furthermore,

Nagai et al. [2001] recently found the Hall current system (the accelerated electrons)

and its effect on the magnetic field in the magnetotail of the earth, using magnetic field

and plasma measurements onboard the Geotail spacecraft.

In the outflow region just outside the electron diffusion region, where the Hall currents

are inward into the neutral line associated with the outward electron flow, electrons are

frozen-in to the magnetic field while ions are unmagnetized as mentioned above. This

implies that a fluid treatment is still available only to the electrons. Applying the analysis

due to Sweet [1958] and Parker [1963] to the electron diffusion region, we can estimate the

upper limit of the outflowing electron velocity as “the electron Alfvén velocity” defined

as VAe ≡ BL/
√

µ0menps [e.g., Shay et al., 2001; Hoshino et al., 2001a], where BL is

the magnetic field in the inflow region, nps is the plasma density in the plasma sheet

(assuming the quasi neutrality, nps = ni,ps � ne,ps, where suffix i and e denote ions and

electrons respectively), me is the mass of an electron, and µ0 is the magnetic permeability

in vacuum. Thus inside the diffusion region electrons can flow with very high velocity

beyond the ordinary Alfvén velocity with which both electrons and ions are expected to

flow outside the diffusion region. In fact, Shay et al. [2001] confirmed by conducting

hybrid simulation that electrons could be accelerated up to approximately the electron

Alfvén velocity just outside the electron diffusion region independent of the electron mass.

Since the electron motion is basically described by the E×B drift, it is expected to exist

a large relative velocity between electrons and ions across the magnetic field. In such

a situation, Hoshino et al. [2001b] suggested that the Buneman-like instability might
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be excited and electrons would be heated by the unstable waves. However they have

not conducted detailed quantitative analyses and it is necessary to identify what kind

of instability mode will be actually excited, investigating the kinetic plasma dispersion

relation, so as to know the mechanism of the electron heating.

In this paper, we consider locally the outflow region just outside the electron diffusion

region and study the possible instabilities excited by a cross-field relative motion with

super Alfvénic velocity between electrons and ions, solving the kinetic plasma dispersion

relation. We next study the anomalous heating of electrons, using 2-1/2 dimensional

electromagnetic full particle simulation with high spatial and time resolution. We show

that the expected instability and the resultant mechanism of the electron heating vary

according to the value of the cross-field relative velocity between electrons and ions.

3



Chapter 2

Possible Instabilities : Linear Theory

In order to identify the instabilities excited by a cross-field relative motion between

electrons and ions just outside the electron diffusion region, we conduct a linear analysis.

We assume the frequency of the unstable waves which are expected to be higher than

the ion cyclotron frequency so that ions are unmagnetized. The lower-frequency modes

than the ion cyclotron frequency will not have enough time to grow to the appreciable

levels inside the diffusion region. Thus the candidates of the unstable modes excited by

a cross-field relative drift between electrons and ions are the kinetic cross-field streaming

instability (KCSI) [e.g., Lemons and Gary, 1977; Wu et al., 1983; Winske et al., 1985],

the lower hybrid drift instability (LHDI) [e.g., Krall and Liewer, 1971; Davidson et al.,

1977; Huba et al., 1978], the electron cyclotron drift instability (ECDI) [e.g., Wong, 1970;

Gary and Sanderson, 1970; Forslund et al., 1970], and the ion acoustic instability [e.g.,

Gary, 1970; Coroniti et al, 1977]. However, because we consider the local region so that

the effects of gradients in the magnetic field magnitude and density are negligible, the

LHDI essentially doesn’t arise from our linear analysis. The ion acoustic instability is

unlikely to occur in the plasma sheet, where the ion temperature is higher than the

electron temperature [e.g., Baumjohann et al., 1989] so that the ion acoustic waves are

dumped. Thus, in the following study, we concentrate our attention on the two modes,

the KCSI and the ECDI.

2.1 Local Dispersion Relation

To derive a general dispersion relation, in which not only electromagnetic effects are

included but also the arbitrary direction of wave propagation and the electron-cyclotron

resonance are considered, we follow the procedure by Tsai et al. [1983]. We assume wave
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frequencies as ωuh � |ω| � ωlh >> ωci in which ions are unmagnetized while electrons

are still magnetized, where ωuh = (ω2
pe + ω2

ce)
1/2 is the upper hybrid frequency (ωpe and

ωce are the plasma frequency and the cyclotron frequency of electrons respectively.),

ωlh = (ωceωci)
1/2 is the lower hybrid frequency, ωci is the ion cyclotron frequency, and

ω = ωr + iγ is a complex frequency. We also assume that the electron motion is basically

described by the E × B drift as V d = −E0/B0 êx while ions are not drifting, where

E0 and B0 are the ambient 0th-order electric and magnetic fields directed to the y and

the −z directions respectively, and êx is the unit vector directed to the x direction.

Strictly speaking, ions are expected to conduct the meandering motion and drift to the

y direction in the vicinity of the plasma sheet. However the velocity is at most about

0.2VA according to the results of a hybrid simulation [Shay et al., 1998], where VA is

the Alfvén velocity in the inflow region, and therefore much lower than the electron drift

velocity which is expected to be the substantial fraction of the electron Alfvén velocity

VAe [Hesse et al., 1999; Shay et al., 2001]. Thus we neglect the ion drift motion in the

following analysis. We set the wave number vector k in the x−z plane (k = k⊥êx +k‖êz)

so as to consider the oblique propagation to the magnetic field. In addition, we assume

k2
⊥ > k2

‖ >> (∂ ln B0/∂x)2, (∂ ln n/∂x)2, which justifies the use of the homogeneity

approximation in B0 and n, where n is the local plasma density assuming n = ni � ne.

We calculate the local dispersion relation in the electron frame so that the uniform

electric field E0 is canceled out and ions possess a bulk velocity Vd êx. Thus the unper-

turbed distribution functions of electrons and ions are described as

fe0 = n

(
1

πv2
e

)3
2

exp

[
−v2

x + v2
y + v2

z

v2
e

]
, (2.1)

fi0 = n

(
1

πv2
i

) 3
2

exp

[
−(vx − Vd)

2 + v2
y + v2

z

v2
i

]
, (2.2)

respectively, where vj = (2Tj/mj)
1/2 is the thermal velocity, Tj and mj are the temper-

ature and the mass of a particle of species j (=e, i), respectively. Then there exists

the following relation between the dielectric tensor ε(k, ω) and the fluctuating elec-

tric field δÊ (see Appendix A for detailed procedure of the derivation), where δE =

δÊ exp[i(k⊥x + k‖z − ωt)],

D(k, ω) · δÊ = 0, (2.3)

D(k, ω) ≡ ε(k, ω) −
(

ck

ω

)2(
I − kk

k2

)
,
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where c is the velocity of light, and I is the unit tensor. We can derive the elements

of the dielectric tensor ε(k, ω) by combining the linearized Vlasov equation and the

Maxwell equations (see Appendix A). The dispersion relation which gives the complex

eigenfrequency is defined by det[D] = 0, and can be manipulated into the following form,

D11 +

2k2
⊥

k2 D12D13D23 + D2
12D22 − k2

⊥
k2 D2

23D22

D22D33 +
k2
⊥

k2 D2
23

= 0. (2.4)

The elements Dij are defined as

D11 = 1 +
2ω2

pi

k2v2
i

[1 + ξiZ(ξi)] +
2ω2

pe

k2v2
e

[
1 + ξ0e

−µ

∞∑
n=−∞

InZ(ξn)

]
,

D22 = 1 − c2k2

ω2
+

2ω2
pe

ω2
µe−µ

∞∑
n=−∞

{
n2

2µ2
In + (In − I ′

n)

}
ξ0Z(ξn),

D33 = 1 − c2k2

ω2
+

2ω2
pe

k2v2
e

k2
⊥

k2
‖

[
1 + ξ0e

−µ

∞∑
n=−∞

(
1 − n

ωce

ω

k2

k2
⊥

)2

InZ(ξn)

]
,

D12 = −D21 = i
ω2

pe

kveωce

k⊥
k‖

e−µ

∞∑
n=−∞

(In − I ′
n)Z(ξn),

D13 =
k2

k2
⊥

D31 = −2ω2
pe

k2v2
e

k2

k‖

[
1 + ξ0e

−µ
∞∑

n=−∞

(
1 − n

ωce

ω

k2

k2
⊥

)
InZ(ξn)

]
,

D23 = − k2

k2
⊥

D32 = i
ω2

pe

kveωce

k⊥
k‖

e−µ
∞∑

n=−∞

(
1 − n

ωce

ω

k2

k2
⊥

)
(In − I ′

n)Z(ξn), (2.5)

where ξn = (ω − nωce)/k‖ve, ξi = (ω − k⊥Vd)/kvi, µ = k2
⊥v2

e/2ω2
ce, In = In(µ) is the

modified Bessel function of the nth order, I ′
n = dIn/dµ, θ = tan−1(k⊥/k‖), k =

√
k2
⊥ + k2

‖,

and Z(ξ) = (
√

π)−1
∫∞
−∞ dx exp[−x2]/(x− ξ) is the plasma dispersion function [Fried and

Conte, 1961]. In Equation (2.4), the first term represents the electrostatic effects while

the electromagnetic contributions are lumped into the second term.

2.2 Drift Velocity Dependence

Though many satellite observations in the plasma sheet associated with the magnetic

reconnection have been reported in the last decade [e.g., Baumjohann et al., 1991; Sergeev

et al., 1995; Shinohara et al., 1998; Nagai et al., 1998, 2001], there is still ambiguity about

the values of plasma parameters in the vicinity of the diffusion region and it is difficult
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to precisely predict the electron Alfvén velocity in the inflow region (the upper limit of

the drift velocity in the outflow region just outside the electron diffusion region) or the

electron thermal velocity in the diffusion region. Thus it is necessary to examine how the

most unstable mode varies according to the relative drift velocity between electrons and

ions. We first solve the dispersion relation (2.4) numerically for the various values of the

drift velocity. For calculations we select the values of plasma parameters, ωce/ωpe = 0.5,

Ti/Te = 8.0, mi/me = 1836, and βi = 1.0. Figure 1 shows the numerical solutions of the

dispersion relation for the various values of the drift velocity. In Figure 1a, the growth

rates γ maximized over wavenumber for a fixed value of the propagation angle θ are

plotted as a function of θ, for the ECDI (solid curves) and the KCSI (dashed curves),

and Figure 1b represents the real frequencies of unstable waves corresponding to Figure

1a. As can be seen in Figure 1a, the peak growth rates of both modes become larger as

the drift velocity increases but the enhancement of the growth rates is more rapid for the

ECDI than the KCSI. Thus, though the peak growth rate of the KCSI is larger than that

of the ECDI at Vd/ve = 0.4, the relation of the magnitudes reverses around Vd/ve = 0.6.

Figure 1b indicates that the frequency range of the ECDI and the KCSI is very much

different; the KCSI is excited in a frequency a few times larger than the lower hybrid

frequency (ωlh/ωpe = 0.012 in the current parameters), while the ECDI is in a frequency

a little above the electron cyclotron frequency (ωce/ωpe = 0.5). These results imply that

the high frequency mode, the ECDI, dominates the low frequency mode, the KCSI, in

the regime where the electron-ion relative velocity exceeds the substantial fraction of the

electron thermal velocity.

We also examined the drift velocity dependence in the case of mi/me = 100 for

application to the numerical simulations shown in the next chapter. In Figure 2, the

solutions of Equation (2.4) is shown for the case of ωce/ωpe = 0.5, Ti/Te = 8.0, mi/me =

100, and βi = 1.0. Similar to the case of Figure 1, the peak growth rate of the ECDI

becomes larger rapidly as the drift velocity increases, while that of the KCSI shows rather

flat variation with a little enhancement. In this case the critical drift velocity, where the

peak growth rate of the ECDI exceeds that of the KCSI, is about 1.0 ve, which is larger

than 0.6 ve in the case of mi/me = 1836.

2.3 Mass Ratio Dependence of the Critical Velocity

In the previous section, we found that the value of the critical drift velocity was

dependent on the mass ratio between an ion and electron, mi/me. Since in the pre-
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vious section we considered only the cases of mi/me = 1836 (the real mass ratio) and

mi/me = 100 (for the purpose of application to the simulational study conducted in the

next chapter), in this section we derive the general relation between the critical drift

velocity and the mass ratio. We assume unstable waves associated with the ECDI to be

electrostatic [e.g., Wong, 1970; Gary and Sanderson, 1970]. Thus the dielectric tensor

ε(k, ω) can be degenerated into a scalar as

εL(k, ω) = D11 = 1 +
2ω2

pi

k2v2
i

[1 + ξiZ(ξi)] +
2ω2

pe

k2v2
e

[
1 + ξ0e

−µ
∞∑

n=−∞
InZ(ξn)

]
. (2.6)

The unstable waves in association with the ECDI have a little higher frequencies than

the upper harmonics of the electron cyclotron frequency (viz. ωr > nωce) and propagate

almost perpendicularly to the ambient magnetic field (viz. k‖ � 0). These characteristics

of the unstable waves and the condition (ωce/ωpe)
2 << 1 allow us to set ξn >> 1 and

µ >> 1. Making use of the relation e−µIn(µ) � 1/
√

2πµ for the large µ approximation,

we can derive the growth rate of the ECDI as

γECDI � 1

2

ImZ ′(ξi)
1

kvi
[ReZ(ξi) + ξiReZ ′(ξi)] + 1√

πkve

Ti

Te

nω2
ce

(ωr−nωce)2

, (2.7)

where Z ′(ξi) = dZ(ξi)/dξi = −2[1 + ξiZ(ξi)]. The most unstable wave with the ECDI

has frequency around ωr � k(Vd−0.7vi) [Forslund et al., 1972], which leads to ξi � −0.7.

Since it is the fundamental mode (n = 1) that has the peak growth rate according to the

results obtained in the previous section, we assume kVd � ωce. Then Equation (2.7) can

be manipulated into more convenient form, and the peak growth rate of the ECDI over

ω − k plane is expressed as the following form,

γM
ECDI

ωce

� 3

4
√

π

(
Vd

ve

)(
Te

Ti

)[
1 +

3

2
√

π

(
Vd

ve

)2(
Te

Ti

)3/2 (
mi

me

)1/2
]−1

. (2.8)

On the other hand, the peak growth rates associated with the KCSI are substantial

fractions of the lower hybrid frequency as shown in Figure 1a and 2a, and they are

assumed to be

γM
KCSI

ωce
= ξ

(
me

mi

)1/2

where 0 < ξ < 1. (2.9)

We define the value of the parameter ξ as a function of the mass ratio mi/me by the

linear interpolation between mi/me = 100 and 1836, where the numerical solutions of
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the growth rates are obtained in the previous section for the several values of the drift

velocity. We set ξ = 0.4 at mi/me = 100 and ξ = 0.8 at mi/me = 1836. By equating the

peak growth rate of the ECDI with that of the KCSI, that is, γM
ECDI = γM

KCSI , we can

lead the critical drift velocity as

(
Vd

ve

)
cr

�
(

Ti

Te

) 1

4ξ
−
√(

1

4ξ

)2

− 2
√

π

3

(
Ti

Te

)1/2 (
me

mi

)1/2

 . (2.10)

If the drift velocity exceeds the critical value given in Equation (2.10), the ECDI will be

first destabilized, otherwise the KCSI will be alternatively destabilized. In Figure 3, we

show the critical drift velocity normalized by the electron thermal velocity as a function

of the mass ratio for the case of Ti/Te = 8.0. The ECDI will be first destabilized in the

region represented by red while the KCSI has the larger growth rate in the region shown in

blue. The critical drift velocity decreases as the mass ratio increases until approximately

mi/me = 500. This is because the peak growth rate of the ECDI is almost independent

of the mass ratio [Forslund et al., 1972] while that of the KCSI is the substantial fraction

of the lower hybrid frequency whose value decreases with increase of the ion mass. When

the mass ratio is larger than approximately 500, the critical velocity is almost constant

because of increase in ξ.
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Chapter 3

Anomalous Electron Heating

In the previous chapter we have shown that the ECDI dominates the KCSI as the

electron-ion relative velocity exceeds a critical value which varies according to the mass

ratio between an electron and ion, but seems to be a substantial fraction of the electron

thermal velocity. In this section we study the electron heating mechanism due to the

unstable waves associated with these instabilities, making use of a 2-1/2 dimensional

electromagnetic full particle code with the particle-in-cell method (see Appendix B for

detailes of this code algorithm). In this code, we assume a doubly periodic boundary in

the x and z directions. The numbers of grid points are Nx × Nz = 256 × 512, and the

grid separations are ∆x×∆z = 0.1λe × 0.1λe. The number of particles per grid is 36, so

the total number is approximately 5 × 106. The initial values of the plasma parameters

are ωce/ωpe = 0.5, Ti/Te = 8.0, mi/me = 100, and βi = 1.0, which are the same as those

in the case of Figure 2. The configuration of the uniform magnetic field B0 and the

drift velocity V d is also given in the electron frame as assumed in the previous chapter.

We conducted simulations mainly for two cases of the drift velocity; one is Vd/ve = 0.8

where the KCSI is expected to dominate and the other is Vd/ve = 2.0 where the ECDI

is expected to dominate.

In Figure 4, we show the time development of the electric field energy for the cases of

the two different drift velocities. The total energy and the x, y and z component energies

are represented by red, green, yellow, and blue curves, respectively. Figure 4 indicates

that the x component of the electric field is overwhelming the other components in both

cases while the growth time, in which the total energy of the electric field develops to

the saturation level, is much shorter in the case of (b) than (a).

In Figure 5, we present the typical wave spectra in the period during which the

amplitude of the unstable waves is growing linearly for the cases of (a) Vd/ve = 0.8 and
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(b) Vd/ve = 2.0. The upper panels in both cases are the spectra in the k⊥−k‖ space, and

the lower panels are those in the ω − k⊥ space. Because the x component of the electric

field develops dominantly, we use only Ex to evaluate these spectra. Figure 5a indicates

that the unstable waves, whose frequencies are approximately the lower hybrid frequency

(ωlh), propagate obliquely to the ambient magnetic field. This mode corresponds to the

KCSI as expected in the linear analysis. On the other hand, in Figure 5b the characteristic

spectra of the KCSI disappears and the ECDI, which propagates perpendicularly to the

ambient magnetic field and whose frequencies are a little above the electron cyclotron

frequency (ωce), becomes dominant. Notice that the upper harmonics appear near the

upper hybrid frequency (ωuh), nearly the twice of the electron cyclotron frequency in

the current parameters. This is because the ECDI is excited by the resonance between

the drifting ions and the electron Bernstein waves in the electron frame [Forslund et al.,

1970].

3.1 Distribution Function of Electrons

The distribution functions of electrons are shown in Figure 6 at the time when the

amplitude of the unstable waves has been saturated (see Figure 4) for the case of the

two drift velocities. Figure 6a indicates that electrons are heated parallel to the ambient

magnetic field by the unstable waves associated with the KCSI. This is because the

obliquely propagating waves due to the KCSI make potential troughs along the magnetic

field, and electrons, which are able to move freely in the field-aligned direction, can

be easily trapped by the potential troughs [McBride et al., 1972]. On the other hand,

Figure 6b shows that electrons are heated perpendicularly to the magnetic field due

to the ECDI. In this case, the unstable waves propagate almost perpendicularly to the

magnetic field and obliquely propagating waves are weak (see Figure 5b) so that electrons

are strong affected by the perpendicularly propagating waves. Since electrons are strongly

magnetized, they are not trapped effectively by the potential troughs but some electrons

can be trapped in a portion of their cyclotron motions and be accelerated by the waves

if the wave amplitudes are enough large. Because the accelerated electrons continue the

gyromotion, electrons will be heated isotropically in the x and y directions.

From these results we suggest that the mechanism of an electron heating and the

consequent distribution functions depend on the value of the electron-ion relative velocity.
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3.2 Heating Level

We next consider how the characteristic temperature of electrons varies according

to the electron-ion relative velocity. We define the characteristic temperature as Te‖ =

mev2
e‖/2 for the case in which the KCSI is dominant, and Te⊥ = mev2

e⊥/2 for the case

in which the ECDI is dominant, where v2
e‖ and v2

e⊥ are the root mean squares of the

parallel and perpendicular velocities of electrons, respectively. In Figure 7a we show

such characteristic temperature at the time when the amplitude of the unstable waves

has been saturated, as a function of the electron-ion relative velocity. The solid line

denotes the case where the ECDI is dominant and electrons are perpendicularly heated,

and the dashed line represents the case where the KCSI is dominant and electrons are

heated parallel to the magnetic field. Figure 7b represents the growth time which is the

necessary time for the amplitude of the electric field to have been saturated. We find that

the growth time for the case where the ECDI is dominant is very short, compared with

that for the case of the KCSI, and seems to be nearly independent of the drift velocity.

Figure 7a and 7b indicate that electrons can be rapidly heated by the ECDI up to higher

temperature as the drift velocity increases.

The electron heating by the ECDI is possibly caused by the trapping in the potential

troughs of the electrostatic waves propagating perpendicularly to the ambient magnetic

field, as is mentioned below. The linear growth of the wave amplitude is expected to be

slowed when the electron thermal velocity approaches the phase velocity of the electric

field Vφ and the number of resonant electrons increases. Because the ECDI is excited

by the Landau resonance between the drifting ions and the electron Bernstein waves in

the electron frame, we can approximate Vφ � Vd. Then the wave amplitudes eventually

saturate when the electron thermal velocity reaches the drift velocity. After the trapped

electrons are released from the potential troughs, they continue the cyclotron motions so

that the distribution function of electrons will be almost isotropic in the vx − vy plane.

Therefore the electron perpendicular temperature at the time when the wave amplitudes

are saturated is expected to be Te,sat/Te,0 = (Vd/ve)
2. In other words, electrons can gain

energy from the waves by the trapping when Vd > ve. In Figure 8 we show such electron

temperature as a function of the drift velocity. The square are the simulation results

which are approximated by the dashed line. The solid line represents the above mentioned

theoretical prediction. We find that the simulation results are in good agreement with

the theory though it is very simple.

We present here, for reference, the detailed heating mechanism suggested by Chen
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and Birdsall [1973], in which it is described how an electron is trapped by an electrostatic

potential trough and accelerated. An electron trapping by an electrostatic wave propa-

gating perpendicularly to a magnetic field is more complex than that in the case there

is no magnetic field, because a strongly magnetized electron is likely to make an escape

from a potential trough. Consider an electron whose unperturbed gyromotion guiding

center is at x = 0, and an electrostatic wave propagating perpendicularly (directing to

+x) to a magnetic field (directing to +z). This electron motion satisfies the following

equation

dvx

dt
= − e

me
Ex − ωcevy, (3.1)

dvy

dt
= ωcevx. (3.2)

From the combination of Equations (3.1) and (3.2), the total force on the electron in the

x direction is

Fx = − ∂

∂x

[
−eφ(x, t) +

1

2
meω

2
cex

2

]
= −∂Φ

∂x
, (3.3)

where

Φ = −eφ(x, t) +
1

2
meω

2
cex

2. (3.4)

φ(x, t) = φ0 cos(kx − ωt) is a wave potential propagating to the x direction, and φ0 is

assumed to be constant. In Equation (3.4) the first term of the right hand side is from

the wave potential, on the other hand, the second term represents the magnetic effect

and by itself simply describes the gyromotion. A schematic view of wave and particle

force potentials in the electron frame are shown in Figure 9 cited from Chen and Birdsall

[1973]. The black dashed curve is the combined potential Φ. Away from x = 0, the

relative effect of the wave potential becomes weaker due to the increasing v × B0 force

and, eventually, the combined potential troughs vanish at |x| = xv � ekφ0/meω
2
ce, where

the wave electric force equals the magnetic force.

Since we consider here the case of Vd > ve, where the ECDI is dominant, the relation

between k and re is kre < 1, and from the linear theory we found that the fastest growing

wave frequency was approximately the electron cyclotron frequency. These facts indicate

that an electron sees at most two troughs during a gyromotion. If the magnetic field is

absent, the bounce period is τb = 2π(me/ek
2φ0)

1/2. There are two conditions for electrons

to be effectively trapped by the wave potential troughs in the presence of the magnetic
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field. The first is that the time during which an electron sees a single trough, τ1 ∼ λ/2Vd,

must be longer than τb, where λ is the wave length. The second is that the time during

which an electron can stay in a traveling trough, τ2 ∼ xv/Vd, has to be longer than τb. If

the wave amplitude is large enough as the above conditions are satisfied, electrons will

be effectively trapped by wave potential troughs and the model described in Figure 9 is

justified.

The model in Figure 9 represents the following scenario. A trapped electron at the

point A (x � xv), which has the total energy (the kinetic energy plus the potential energy)

ΦA, is trapped by the trough and carried to the point B (x � xv) by the traveling wave.

At this point, the potential trough vanishes and the electron is released to continue the

gyromotion with the total energy ΦB � me(ωcexv)
2/2.

If Te,sat/Te,0 = (Vd/ve)
2 is assumed, we can set ωcexv � Vd, which gives

E0,sat = VdB0, (3.5)

where E0,sat is the saturation level of the wave amplitude of the fastest growing mode.

The comparison between (3.5) and the simulation results is shown in Figure 10. The

theoretical prediction in (3.5) well agrees with the simulation results, which justifies the

model of Figure 9.

3.3 The Case of Massive Ion with mi/me = 400

So far in this chapter, we have considered the case of mi/me = 100, where the electron

heating occurred perpendicularly to the magnetic field due to the ECDI when Vd/ve > 1

and parallel to the magnetic field due to the KCSI when Vd/ve < 1. We have found that

electrons are rapidly heated by the ECDI until the electron thermal velocity reaches the

ion bulk velocity in the electron frame. In the case of mi/me = 100, the electron heating is

due to the fastest growing mode. However the critical drift velocity is below the electron

thermal velocity in the case of mi/me = 1836, as can be seen in Figures 1(a) and 3. Thus

it is possible for the ECDI to be excited even when the drift velocity is under the electron

thermal velocity. If electrons are heated by the ECDI in this case, the mechanism can

differ from that in the case of mi/me = 100, because the upper limit of the electron

thermal velocity is the drift velocity in the latter case. Therefore we need to examine

how electrons are heated by the ECDI when Vd < ve. Because it is difficult to conduct

the full particle simulations for the case of mi/me = 1836, with enough resolution, due to
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the restriction of the computer resources, we execute the simulations with mi/me = 400

in this section.

The time evolution of the wave spectra of Ex in the k⊥ − k‖ space is shown in Figure

11, for the case of Vd/ve = 0.95. The ECDI, which has the peak growth rate at (k⊥, k‖) =

(±6.2, 0.0) in this condition, is first excited and rapidly grows during tωpe � 400, as is

expected from the linear theory. However, it is soon dumped and instead a low wave

number (viz. a low frequency) mode, the KCSI, becomes dominant after tωpe � 480. In

Figure 12, we present the electron distribution functions at the corresponding time to

the wave spectra in Figure 11. It is interesting that electrons are not heated effectively,

although the ECDI is dominant until tωpe � 400. This is because a lot of electrons can

be resonant with the electrostatic waves in the case of Vd/ve < 1, as a result, the unstable

waves are attenuated before they have grown large enough to effectively trap electrons.

Indeed a low saturation level is also deduced from Figure 10 in the case of Vd/ve < 1.

Since the KCSI is dominant after tωpe � 480, electrons are eventually heated parallel to

the ambient magnetic field.
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Chapter 4

Discussion

4.1 Travel Time and Growth Time

So far we have assumed that electrons are strongly magnetized while ions are unmag-

netized. However this assumption is valid only inside the diffusion region, which spreads

from the X-type neutral line with the order of the ion inertial length λi in the z direction

and 10λi in the x direction [e.g., Shay et al., 1998]. Since ions outside the diffusion re-

gion are also expected to be magnetized, the relative velocity between electrons and ions

nearly disappears, stabilizing both the ECDI and the KCSI. It is therefore important

to check whether there is enough time for the unstable waves to be saturated and heat

electrons up to the level described in Figure 7a while electrons are passing through the

diffusion region. In Figure 13 we represent the growth time (which is the simulation

result) of the most unstable wave associated with the ECDI (solid line) and the KCSI

(dashed line), which are the same as those in Figure 7b, and the travel time of electrons

drifting across the diffusion region (thick solid curve), as a function of the drift veloc-

ity. We estimated the travel time as roughly 10λi/Vd, using the same parameters with

those in the simulation. The travel time may be underestimated because the relative

electron-ion velocity Vd becomes lower during the passage. Figure 13 indicates that the

travel time is greater than the growth time for all points, so that there is enough time

for the two unstable modes to be saturated and heat the electrons up to the level shown

in Figure 7a.
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4.2 Comparison with Observations

The instabilities associated with a cross-field relative motion between electrons and

ions vary according to the relative magnitude of the relative electron-ion velocity to the

initial thermal velocity of electrons. Here we compare the magnitude of the electron

drift velocity, assuming that ions have no bulk velocity, with that of the electron thermal

velocity inferred from observational results and examine which mode is expected to be

excited in the reconnection region formed in the Earth magnetotail. Since the upper

limit of the outflowing electron drift velocity just outside the electron diffusion region

is expected to be the electron Alfvén velocity VAe in the inflow region [e.g., Shay et al.,

2001; Hoshino et al., 2001] as already mentioned, we assume the relative electron-ion

velocity Vd is equivalent to VAe. Thus we compare the electron thermal velocity ve with

the electron Alfvén velocity VAe so as to determine which unstable mode and the resultant

electron heating is operative.

In order to calculate the electron Alfvén velocity we assume BL = (B2
x + B2

y)
1/2 = 15

nT and nps ≈ 0.3 cm−3 after Baumjohann et al. [1989] and obtain VAe/c ≈ 0.085. On

the other hand, to estimate the electron thermal velocity in the plasma sheet at the time

of the reconnection, we use, for example, the observational data presented by Shinohara

et al. [1998] (see Table 1, therein), which were obtained by Geotail observation. Though

their data were probably taken outside the diffusion region because they observed fast

tailward ion flows with southward Bz at the same time, we assume that the plasma

parameter necessary for calculating of the electron thermal velocity, that is, the electron

temperature is almost common around the diffusion region. From their data we obtain

several values ranging from ve/c = 0.066 (Te = 1.1 keV) to ve/c = 0.119 (Te = 3.6 keV)

(see Figure 14). Since the linear theory represents that the critical drift velocity, where

the growth rate of the ECDI exceeds that of the KCSI, is approximately 0.6ve (see Figure

1a), the electron Alfvén velocity seems to exceed the critical value for any case so that

the ECDI is expected to be excited. However the electron heating associated with the

ECDI is weak for the case of Vd/ve < 1, as mentioned in Section 3.3. Thus the electron

heating by the KCSI will dominate in the case of Vd/ve < 1 even though the growth rate

of the KCSI is lower than that of the ECDI. Therefore we can expect that both modes

are possible to be excited and heat electrons in parallel or perpendicular to the ambient

magnetic field.

As for the identification of the excited mode through an analysis of the wave data

obtained by spacecraft observations, the frequency of excited wave is quite helpful. The

17



real frequencies of the KCSI with the maximum growth rate for the various drift veloc-

ities can be read from Figure 1 to range from 0.04ωpe to 0.11ωpe. The wave numbers

(k⊥) corresponding to these cases can be evaluated to range from 1.01λ−1
e to 0.93λ−1

e .

Therefore the Doppler-shifted frequencies (ωr − k⊥v) are in the range from −0.011ωpe to

−0.010ωpe (see Figure 15), where we assume that the observation will be made in the ion

frame and take v = Vd. In the same way, the Doppler-shifted frequencies of the waves

excited by the ECDI take the values from −0.062ωpe to −0.039ωpe, where the values of

ωr and k⊥ range from 0.545ωpe to 0.678ωpe, and 12.14λ−1
e to 5.74λ−1

e , respectively. Thus

for the observed waves which have the frequencies near the the lower hybrid frequency

(ωlh = 0.012ωpe in Figure 1), we can assume that they are excite by the KCSI. On the

other hand, for the waves which have lower frequencies around 0.05ωpe, it can be assumed

that they are excited by the ECDI.
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Chapter 5

Summary and Conclusion

In this paper, we examined a possible mechanism of an electron heating due to a

strong Hall current, which is caused by a large velocity difference between electrons and

ions inside the diffusion region. We first solved the linear kinetic dispersion relation in

order to identify possible instabilities. We found that the unstable mode varied according

to the electron-ion relative velocity. In the case of the real mass ratio, mi/me = 1836,

the fastest growing mode is the high frequency mode associated with the ECDI when

Vd/ve � 0.6, while it is the low frequency mode associated with the KCSI when Vd/ve �
0.6. However the critical value of the drift velocity, where the sort of the most unstable

mode changes, increases as the mass ratio decreases. This is because the growth rate

of the ECDI is almost independent of the mass ratio, different from that of the KCSI,

which decreases as the mass ratio increases since the value is the substantial fraction of

the lower hybrid frequency. This is the character worth attention when we conduct a

numerical simulation, in which it is usually difficult to use the real mass ratio because of

the restriction of the computer resources.

We next conducted the 2-1/2 dimensional electromagnetic full particle simulations to

examine the electron heating due to the unstable waves. We found that electrons are

heated perpendicularly to the ambient magnetic field due to the ECDI, while the heating

is in the parallel direction by the KCSI. In particular, we showed that electrons could be

very quickly heated up to ve � Vd by the trapping in the electrostatic potential troughs,

when the ECDI was dominant. We also showed that the electron heating associated with

the ECDI could be, however, ineffective when Vd/ve < 1 even though the ECDI is first

excited. This is because the number of resonant electrons is so large when Vd/ve < 1

that the wave amplitude is saturated at low level and soon dumped before it grows large

enough to trap electrons effectively. It is important that the most dominant instability
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and the resultant mechanism of an electron heating vary around Vd/ve = 1.0, because

the electron thermal velocity may be comparable with the electron-ion relative velocity

inside the diffusion region according to the satellite observations. The identification of

the dominant unstable mode will be possible by an analysis of the wave data obtained

by spacecraft observations, since the frequency ranges of the KCSI and the ECDI are

different; the former is nearly the lower hybrid frequency while the latter is around

|ω′| = 0.05ωpe, higher than the former. The Buneman-type instability is not necessarily

excited because this instability is a magnetohydrodynamic limit of the ECDI and seems

to be dominant when Vd/ve >> 1.

Because we have concentrated our attention only on a local region inside the diffusion

region with high spatial and time resolution, we cannot discuss the dynamics around the

diffusion region, including the feedback effects of the electron heating to the diffusion

region. In order to understand the self-consistent mechanism of the magnetic reconnec-

tion including Hall effects near the X-type neutral line, we need to conduct a simulation

that covers more extensive region with high spatial and time resolution especially in the

diffusion region.
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Appendix A

Derivation of the Kinetic Plasma
Dispersion Relation

In this Appendix we derive a kinetic plasma dispersion relation, including oblique

propagation of unstable waves and the electron cyclotron resonance, when the unper-

turbed distribution functions of electrons and ions are defined as Equations (2.1) and

(2.2), respectively. We assume wave frequencies are much higher than the ion cyclotron

frequency so that ions are unmagnetized while electrons still remain frozen-in to the

ambient magnetic field.

A.1 Perturbed Distribution Function δf

We follow the method described in Nicholson [1983] in order to derive the general

form of the perturbed distribution function. The fundamental equation is the Vlasov

equation,

∂fs

∂t
+ v · ∇xfs +

qs

ms
(E + v ×B) · ∇vfs = 0, (A.1)

where suffix s denotes the particle species (electron or ion). In order to linearize Equation

(A.1) around the unperturbed distribution function, we put

fs(x, v, t) = fs0(v) + δfs(x, v, t),

E(x, t) = δE(x, t),

B(x, t) = B0 + δB(x, t).
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Notice that we study in the electron frame so that the uniform electric field is zero. Then

the linearized Vlasov equation for species s is

dδfs

dt
= − qs

ms

(δE + v × δB) · ∇vfs0, (A.2)

where d/dt = ∂t + v · ∇x + qs/ms(v × B0) · ∇v is the total differential along the

unperturbed orbits of particles in the phase space. Therefore in order to derive the

unperturbed distribution function both sides of Equation (A.2) are integrated along the

unperturbed orbits. We pursue the unperturbed orbit (X(t), V (t)) of a particle whose

motion is controled by Newton’s low of motion in the real space. The governing equations

of a particle motion on this orbit are

dX(t)

dt
= V (t), (A.3)

and

dV (t)

dt
=

qs

ms
V (t) × B0[X(t), t]. (A.4)

From Equations (A.3) and (A.4), we know that the unperturbed orbit can be given by

the following form,

X(t′) = x −
∫ t

t′

dX(t′′)
dt′′

dt′′,

V (t′) = v −
∫ t

t′

dV (t′′)
dt′′

dt′′, (A.5)

where the integral constants are determined as they satisfy the relations X(t) = x and

V (t) = v. As a result the orbit (X(t′), V (t′)) represents that of a particle which approach

the point (x, v) at time t. Here we define a particle position in the phase space (x′, v′)

as x′ = X(t′) and v′ = V (t′), which mean that the particle on the orbit (X(t′), V (t′)) is

located at the position (x′, v′) at time t′. (Notice that capital letters (X, V ) represent

an orbit curve as a function of time t in the seven-dimensional phase space while small

letters (x, v) denotes the particle position on the orbit at particular time.) Then we

rewrite Equation (A.1) as

d

dt′
δfs(x

′, v′, t′) = − qs

ms
[δE(x′, t′) + v′ × δB(x′, t′)] · ∇v′fs0(v

′). (A.6)

Integrating both sides of Equation (A.6) from t′ = −∞ to t′ = t, we can obtain

δfs(x, v, t) = δfs(x
′, v′, t′ = −∞) − qs

ms

∫ t

−∞
dt′ [δE(x′, t′) + v′ × δB(x′, t′)] · ∇v′fs0(v

′).

(A.7)
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Equation (A.7) is a general form of the perturbed distribution function. In the following,

we calculate the wave form solution of Equation (A.7), assuming

δE(x, t) = δÊ exp[i(k · x − ωt)],

δB(x, t) = δB̂ exp[i(k · x − ωt)],

δfs(x, v, t), = δf̂s(v) exp[i(k · x − ωt)], (A.8)

where δÊ and δB̂ are constant vectors, k = k⊥êx + k‖êz, and ω = ωr + iγ. Since we

are here only interested in unstable waves with positive growth rates, we set the initial

fluctuation δfs(t
′ = −∞) to be zero, which allow us to neglect the first term in the right

hand side of Equation (A.7). Thus Equation (A.7) is manipulated into the following

form,

δf̂s = − qs

ms

∫ 0

−∞
dτ [δÊ + v′ × δB̂] · ∇v′fs0(v

′) exp[i(k · ξ − ωτ)], (A.9)

where ξ = x′−x and τ = t′−t, and the position (x′, v′) is put on the orbit (X(τ ), V (τ ))

which passes the point (x, v) at τ = 0.

A.1.1 Ion Contribution

Since we assume that ions are unmagnetized, the unperturbed orbits of ions are

calculated from Equations (A.3) and (A.4) with B0 = 0 as

V (t′) = v, X(t′) = x + vτ.

Since v′ is independent of τ , it is easy to execute the integration in Equation (A.9) and

we obtain

δf̂i =
e

mi

δÊ

i(ω − k · v)
· ∇vfi0, (A.10)

where we put δB̂ = 0 because of the assumption of unmagnetization. Making use of the

isotropic nature of the unperturbed distribution function in the velocity space, we can

manipulate Equation (A.10) into the following form,

δf̂i = i
2e

mi

(vx − Vd)δÊx + vyδÊy + vzδÊz

k · v − ω

∂fi0

∂v2
⊥

, (A.11)

where v2
⊥ = (vx − Vd)

2 + v2
y.
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A.1.2 Electron Contribution

Electrons conduct the cyclotron motion around the magnetic field line. From Equa-

tions (A.3) and (A.4) we derive the unperturbed orbits of electrons as

Vx(τ ) = v⊥ cos(ωce(t
′ − t) + θ) = v⊥ cos(ωceτ + θ),

Vy(τ ) = v⊥ sin(ωce(t
′ − t) + θ) = v⊥ sin(ωceτ + θ),

Vz(τ ) = v‖,

X(τ ) = x +
v⊥
ωce

[sin(ωceτ + θ) − sin θ],

Y (τ ) = y − v⊥
ωce

[cos(ωceτ + θ) − cos θ],

Z(τ ) = z + v‖τ, (A.12)

where v‖ = vz, and θ (0 ≤ θ ≤ 2π) is the initial phase at τ = 0 in the velocity space. In

this case, since v′ is a function of τ the execution of the integration in Equation (A.9) is

slightly complicated. We eliminate δB̂ from Equation (A.9) by using Faraday’s low and

substitute (A.12) into the resultant equation. After some algebraic calculation we obtain

δf̂e = i
2e

me

∞∑
n=−∞

n
λ
v⊥JnδÊx + iv⊥J ′

nδÊy + v‖JnδÊz

ω − nωce − k‖v‖

∂fe0

∂v2
⊥

exp[n(θ − π

2
) + λ cos θ],

(A.13)

where λ = k⊥v⊥/ωce, Jn = Jn(λ) is the Bessel function of order n, and J ′
n = dJn(λ)/dλ.

In deriving Equation (A.13) we used the following identical equation,

eiλ sin θ =
∞∑

n=−∞
Jn(λ) exp[inθ], (A.14)

and the differential form of (A.14) about λ and θ,

eiλ sin θ sin θ = −i
∞∑

n=−∞
J ′

ne
inθ, eiλ sin θ cos θ

∞∑
n=−∞

n

λ
Jneinθ.

A.2 Dispersion Relation

In order to complete the linearize equation system which gives the linear dispersion

relation, we here introduce Maxwell’s equations. We assume the wave form solutions

given in (A.8) and replace ∂/∂t with −iω and ∇ with ik. Then Faraday’s law and
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Ampère’s law are expressed like

δB̂ =
k × δÊ

ω
, (A.15)

ik × δB̂ = µ0 δĵ − i
ω

c2
δÊ, (A.16)

where δĵ is the Fourier component of the fluctuating current density δj. δĵ is defined by

δĵ = e

[∫
vδf̂i d

3v −
∫

vδf̂e d3v

]
. (A.17)

Substituting Equations (A.11) and (A.13) into (A.17) and executing the integration over

the velocity space, we can derive δj and the dielectric tensor by combining it with

Equations (A.15) and (A.16). On calculation of the integration in (A.17) we use the

following relations,∫ ∞

0

xJ 2
n(αx) e−x2

dx =
1

2
In(α

2/2) e−α2/2,∫ ∞

0

x2J ′
n(αx)Jn(αx) e−x2

dx =
α

4
[I ′

n(α
2/2) − In(α

2/2)] e−α2/2,∫ ∞

0

x3[J ′
n(αx)]2 e−x2

dx =

[(
n2

2α2
+

α2

4

)
In(α

2/2) − α2

4
I ′
n(α

2/2)

]
e−α2/2,

where In(x) is the modified Bessel function of order n, and I ′
n(x) = dIn(x)/dx. After

some calculation we obtain

δĵ = σ · δÊ, (A.18)

where σ is the conductivity tensor and the elements are expressed by the following form,

σxx = −i
2εω2

pi

k2v2
i

ω[1 + ξiZ(ξi)] sin
2 θ − i

ε0ω
2
pe

ω

e−µ

µ

∞∑
n=−∞

n2Inξ0Z(ξn),

σyy = −i
2εω2

pe

ω
µe−µ

∞∑
n=−∞

{
n2

2µ2
In + (In − I ′

n)

}
ξ0Z(ξn),

σzz = −i
2ε0ω

2
pi

k2v2
i

ω[1 + ξiZ(ξi)] cos2 θ − i
2ε0ω

2
pi

ω
e−µ

∞∑
n=−∞

Inξ0ξn[1 + ξnZ(ξn)],

σxy = −σyx =
ε0ω

2
pe

ω
e−µ

∞∑
n=−∞

n(I ′
n − In)ξ0Z(ξn),

σxz = σzx = −i
2ε0ω

2
pi

k2v2
i

ω[1 + ξiZ(ξi)] sin θ cos θ − i
ε0ω

2
pe

ω

√
2

µ
e−µ

∞∑
n=−∞

nInξ0[1 + ξnZ(ξn)],

σyz = −σzy = −ε0ω
2
pe

ω

√
2µe−µ

∞∑
n=−∞

(I ′
n − In)ξ0[1 + ξnZ(ξn)],
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where ξn = (ω −nωce)/k‖ve, µ = k2
⊥v2

e/2ω2
ce, ξi = (ω − k⊥Vd)/kvi, θ = tan−1(k⊥/k‖), and

Z(ξ) is the plasma dispersion function [Fried and Conte, 1961]. We substitute (A.18)

into Equation (A.16) and use Equation (A.15) to eliminate δB̂. Then (A.16) is reduced

into 
 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz




 δÊx

δÊy

δÊz


 = 0, (A.19)

where

Dxx = 1 − c2k2

ω2
cos2 θ +

2ω2
pi

k2v2
i

[1 + ξiZ(ξi)] sin
2 θ +

ω2
pe

ω2

e−µ

µ

∞∑
n=−∞

n2Inξ0Z(ξn),

Dyy = 1 − c2k2

ω2
+

2ω2
pe

ω2
µe−µ

∞∑
n=−∞

{
n2

2µ2
In + (In − I ′

n)

}
ξ0Z(ξn),

Dzz = 1 − c2k2

ω2
sin2 θ +

2ω2
pi

k2v2
i

[1 + ξiZ(ξi)] cos2 θ +
2ω2

pe

ω2
e−µ

∞∑
n=−∞

Inξ0ξn[1 + ξnZ(ξn)],

Dxy = −Dyx = −i
ω2

pe

ω2
e−µ

∞∑
n=−∞

n(In − I ′
n)ξ0Z(ξn),

Dxz = Dzx =
c2k2

ω2
sin θ cos θ +

2ω2
pi

k2v2
i

[1 + ξiZ(ξi)] sin θ cos θ +
ω2

pe

ω2

√
2

µ
e−µ

∞∑
n=−∞

nInξ0[1 + ξnZ(ξn)],

Dyz = −Dzy = i
ω2

pe

ω2

√
2µe−µ

∞∑
n=−∞

(In − I ′
n)ξ0[1 + ξnZ(ξn)]. (A.20)

The kinetic dispersion relation is defined by det[D] = 0.

In order to facilitate the discussion about the electrostatic and electromagnetic effects

in the dispersion relation, we next derive the dispersion tensor D in a representation based

on the scalar and vector potentials δφ̂, δÂ, rather than the electric field δÊ, after Tsai

et al., [1984]. Since δÊ = −ikδφ̂ + iωδÂ and k · δÂ = 0 (Coulomb gauge), we can write
 δÊx

δÊy

δÊz


 = iω


 −k⊥

k
0 − k‖

k⊥
0 1 0

−k‖
k

0 1




 k

ω
δφ̂

δÂy

δÂz


 . (A.21)

Using the potential representations, we can rewrite Equation (A.19) as
 D11 D12 D13

D21 D22 D23

D31 D32 D33




 k/ωδφ̂

δÂy

δÂz


 = 0. (A.22)
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From Equations (A.19), (A.21) and (A.22), we can show that

D11 =
k2
⊥

k2
Dxx +

2k⊥k‖
k2

Dxz +
k‖
k2

Dzz ,

D22 = Dyy ,

D33 =
k2
‖

k2
Dxx − 2k⊥k‖

k2
Dxz +

k2
⊥

k2
Dzz ,

D12 = −D21 = −k⊥
k

Dxy +
k‖
k

Dyz ,

D13 =
k2

k2
⊥

D31 =
k‖
k

Dxx − k2
⊥ − k2

‖
kk⊥

Dxz − k‖
k

Dzz ,

D23 = − k2

k2
⊥

D32 =
k‖
k⊥

Dxy + Dyz . (A.23)

The representation of (2.5) can be obtained by substituting (A.20) into (A.23). In the δφ̂,

δÂ representation, the dispersion relation reduces to D11 = 0 if electromagnetic effect is

ignored.
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Appendix B

Algorithm in the Full Particle Code

In a usual plasma particle simulation, we employ modeled particle called superpar-

ticles, which has a finite spatial scale about the order of the spatial grid size. This is

because we need to simulate with far fewer particles than in a real case. For example,

provided that plasma includes electrons with number density 1.0 /cc and thermal velocity

c (the light velocity), the Debye length is λD ≈ 105 m. If we set the grid separations to

be λD/10, the number of particles par grid is approximately 1012 for a two-dimensional

simulation. Overall the simulation space with 100 × 100 grids, it is above 1016 that is

necessary number of particles to conduct a simulation. It is totally impossible to treat

such a vast number of particles. Furthermore, the superparticles with broad shapes are

beneficial to moderate numerical noises. In this appendix, we show the detailed algorithm

in our 2-1/2 dimensional full particle simulation code with the superparticles [Birdsall

and Langdon, 1995].

B.1 Fundamental Equations

The position xsj and the velocity vsj of the j-th particle obey Newton’s law,

ms
dvsj

dt
= qs [E(xsj) + vsj × B(xsj)], (B.1)

dxsj

dt
= vsj, (B.2)
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where ms and qs represent the mass and the charge of a particle (a superparticle) of

species s, respectively. The electromagnetic field is described by Maxwell’s equations,

∂B

∂t
= −∇× E, (B.3)

1

c2

∂E

∂t
= ∇× B − µ0j, (B.4)

∇ ·E =
ρ

ε0
, (B.5)

∇ ·B = 0, (B.6)

where the charge density ρ and the current density j is defined at each grid X i,

ρ(X i) =
∑

s

qsns(X i), (B.7)

j(X i) =
∑

s

qsns(X i)vs, (B.8)

where ns is the number density.

In order to normalize Equations from (B.1) to (B.8), we put the normalized quantities

in the following forms,

m∗
s =

ms

me

, x∗
s =

ωpe

c
xs, t∗ = ωpet, q∗s =

qs

e

v∗
s =

vs

c
, ω∗ =

ω

ωpe
, E∗ =

eE

mecωpe
,

B∗ =
eB

meωpe
, ρ∗ =

1

e

(
c

ωpe

)2

ρ, j∗ =
1

ec

(
c

ωpe

)2

j,

n∗
s =

(
c

ωpe

)2

ns, (B.9)

where the asterisk denotes that the quantities are dimensionless. Using (B.9), We can

rewrite the fundamental equations as the following forms.

Newton’s law,

m∗
s

dv∗
sj

dt∗
= q∗s [E∗(x∗

sj) + v∗
sj ×B∗(x∗

sj)], (B.10)

dx∗
sj

dt∗
= v∗

sj, (B.11)
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Maxwell’s equations,

∂B∗

∂t∗
= −∇∗ × E∗, (B.12)

∂E∗

∂t∗
= ∇∗ × B∗ − 1

n∗
0

j∗, (B.13)

∇∗ · E∗ =
1

n∗
0

ρ∗, (B.14)

∇∗ · B∗ = 0, (B.15)

where

ρ∗(x∗) =
∑

s

q∗sn
∗
s(x

∗), (B.16)

j∗(x∗) =
∑

s

q∗sn
∗
s(x

∗)v∗
s. (B.17)

We first advance the velocity v∗
sj and the position x∗

sj in time, using Equations (B.10)

and (B.11). After all particle velocities and positions are determined, we can next obtain

the charge density and the current density at each grid point from Equations (B.16) and

(B.17), respectively. We finally advance in time the electric field and the magnetic field

through Maxwell’s equations (B.12) – (B.15). It is noticeable that we separately derive

the longitudinal and transversal components of the electric field from (B.14) and (B.13),

respectively, to satisfy the charge conservation.

In the following section, we omit the asterisks to avoid the complication.

B.2 Boundary and Initial Conditions

The boundary condition in our simulation is set to be doubly periodic. The initial

conditions should be given with self-consistency to the particle position xsj and velocity

vsj , the fluctuating fields (E, B1), and the uniform field B0. The initial distribution of

particles are assumed to be Maxwellian obtained by making use of Box-Muller method

[Press et al., 1992], by which particle velocities with the thermal velocity vt are described

in the following form,

v1 = vt

√
−2 ln x1 cos 2πx2,

v2 = vt

√
−2 ln x1 sin 2πx2, (B.18)

where x1 and x2 are the uniform random numbers. The velocities v1 and v2 are indepen-

dent of each other.
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B.3 Momentum Equations

The finite-difference equations of (B.10) and (B.11) are

v
n+1/2
s − v

n−1/2
s

∆t
=

qs

ms

[
En(xn

s ) +
v

n+1/2
s + v

n−1/2
s

2
× Bn(xn

s )

]
, (B.19)

xn+1
s − xn

s

∆t
= vn+1/2

s , (B.20)

where (n−1/2, n, n+1/2) represent time grids at ((n−1/2)∆t, n∆t, (n+1/2)∆t). E(xs)

and B(xs) are the values at the particle position xs. However E and B are defined only

at spatial grid points X i. Thus it is necessary to assign the values of electromagnetic

field defined at grid points X i to those at particle positions xj. In our code, we give a

particle with a broad shape in the following form,

S(x, y) =
(∆x − |x|)(∆y − |y|)

∆x∆y
, |x| ≤ ∆x, |y| ≤ ∆y, (B.21)

where S(x, y) is called the shape factor. Then the assignment to a particle position

xsj is conducted from the nearest four grid points (Xi, Yk), (Xi+1, Yk), (Xi, Yk+1), and

(Xi+1, Yk+1),

E(xj, yj) = E(Xi, Yk)S(Xi − xj, Yk − yj) + E(Xi, Yk+1)S(Xi − xj, Yk+1 − yj)

+E(Xi+1, Yk)S(Xi+1 − xj, Yk − yj) + E(Xi+1, Yk+1)S(Xi+1 − xj, Yk+1 − yj).

This technique is called the particle-in-cell (PIC) method.

B.4 Charge Assignment

In order to obtain the charge density ρ and the current density j at each grid point

X i, it is necessary to assign particle positions xsj and velocities vsj to grid points. In our

code, the quantities associated with a particle (xsj , vsj) are assigned to the nearest four

grid points by making use of PIC method as is conducted in the previous section. Since

the particle velocities are defined at half-integer time, ρ(X i) and j(X i) are expressed as

ρn(X i) =
∑

s

∑
j

qsS(xn
sj − Xi, y

n
sj − Yk),

jn+1/2(X i) =
∑

s

∑
j

qsv
n+1/2
sj

S(xn
sj − Xi, y

n
sj − Yk) + S(xn+1

sj −Xi, y
n+1
sj − Yk)

2
.
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B.5 Poisson’s Equation

After the spatial distribution of the charge density are derived, we can obtain the longi-

tudinal electric field EL from Poisson’s equation,

∇ · EL|X i
=

1

n0
ρ(X i). (B.22)

We solve Equation (B.22) by executing Fourier transformation. Since EL can be ex-

pressed by a scalar potential φ in the form,

EL(X i) = −∇φ|Xi
. (B.23)

(B.22) is rewritten as

∇2φ|X i
= − 1

n0
ρ(X i). (B.24)

Here we write the position of grid points with the integer l and m,

X i = l ∆xêx + m ∆yêy,

l = 0, 1, · · · , Nx − 1 Nx : the number of grids in the x direction,

m = 0, 1, · · · , Ny − 1 Ny : the number of grids in the y direction,

and the physical quantities at the grid points as Al,m.

The Fourier transformation in the discrete form is, for example,

ρkx,ky = ∆x∆y
∑

l

∑
m

ρl,me−i(kxxl+kyym), (B.25)

where

(xl, ym) = (l∆x, m∆y),

(kx, ky) =

(
2πnx

Nx∆x
,

2πny

Ny∆y

)
,

nx,y = 0,±1,±2, · · · ,±Nx,y

2
− 1,−Nx,y

2
. (B.26)

On the other hand, the inverse Fourier transformation in the discrete form is

ρl,m =
1

(Nx∆x)(Ny∆y)

Nx/2−1∑
nx=−Nx/2

Ny/2−1∑
ny=−Ny/2

ρkx,kye
i(kxxl+kyym). (B.27)
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The finite-difference equation of (B.24) is

φl+1,m − 2φl,m + φl−1,m

∆x2
+

φl,m+1 − 2φl,m + φl,m−1

∆y2
= − n0

ρl,m
.

And its Fourier transformation is

K2

kφk =
ρk
n0

, (B.28)

where

K2

k = k2
xdif 2

(
kx∆x

2

)
+ k2

ydif 2

(
ky∆y

2

)
, dif θ ≡ sin θ

θ
.

Then the finite-difference form of the x component of Equation (B.23) is

Ex,l,m = −φl+1,m − φi−1,m

2∆x
.

And its Fourer transformation is

E
x,k = −iκ

x,kφk, where κ
x,k = kxdif (kx∆x). (B.29)

From (B.28) and (B.29), we can obtain

E
x,k = −i

κ
x,k

n0K2

k
ρk. (B.30)

In the same way, we can get the y component,

E
y,k = −i

κ
y,k

n0K2

k
ρk. (B.31)

The longitudinal electric field EL is derived by the inverse Fourier transforming of (B.30)

and (B.31).

B.6 Faraday’s Law and Ampère’s Law

We finally advance the fluctuating magnetic field and the transversal electric field,

using Faraday’s law and Ampère’s law. The finite-difference form of Equations (B.12)

and (B.13) is

Bn+1 −Bn

∆t
= −∇×

(
En+1

T + En
T

2

)
, (B.32)

En+1
T − En

T

∆t
= ∇×

(
Bn+1 + Bn

2

)
− 1

n0
j

n+1/2
T , (B.33)
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where the suffix T denotes the transversal component of the quantity. Combining (B.32)

and (B.33), we eliminate Bn+1 to obtain En+1
T from the previously given quantities (En

T ,

Bn, j
n+1/2
T ),[

1 +
∆t2

4
∇×∇×

]
En+1

T =

[
1 − ∆t2

4
∇×∇×

]
En

T + ∆t∇× Bn − ∆t

n0
j

n+1/2
T . (B.34)

Here, making use of the notation ∇×∇×ET = −∇2ET , we rewrite the above equation

as [
1 − ∆t2

4
∇2

]
En+1

T =

[
1 +

∆t2

4
∇2

]
En

T + ∆t∇× Bn − ∆t

n0

j
n+1/2
T . (B.35)

In Equation (B.35), the finite-difference forms of the terms including ∇ operator are

∇2E =
El+1,m − 2El,m + E l−1,m

∆x2
+

El,m+1 − 2El,m + El,m−1

∆y2
,

∇× B =




Bz,l,m+1−Bz,l,m−1

2∆y

−Bz,l+1,m−Bz,l−1,m

2∆x
By,l+1,m−By,l−1,m

2∆x
− Bx,l,m+1−Bx,l,m−1

2∆y


 .

Thus the Fourier transformation of (B.35) is[
1 +

∆t2

4
K2

k

]
En+1

k
=

[
1 − ∆t2

4
K2

k

]
En

k + i∆t κk × Bn

k − ∆t

n0
j

n+1/2

k
, (B.36)

where (En+1

k
, En

k, Bn

k, j
n+1/2

k
) are the Fourier components of (En+1

T , En
T , Bn, j

n+1/2
T ), re-

spectively, and K2

k and κk are defined as the following forms,

K2

k = k2
xdif 2

(
kx∆x

2

)
+ k2

ydif 2

(
ky∆y

2

)
,

κk =


 kxdif (kx∆x)

kydif (ky∆y)
0


 .

Then we can calculate Bn+1

k
, the Fourier component of Bn+1, by Fourier transforming

Equation (B.32).

Bn+1

k
= Bn

k − i∆t κk ×
(

En+1

k + En

k
2

)
. (B.37)

The advanced electromagnetic fields (En+1
T , Bn+1) are obtained by inversely Fourier

transforming (En+1

k
, Bn+1

k
).
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