Dust coagulation with porosity evolution; effects on planetesimal formation and opacity evolution

Akimasa Kataoka (ITA, Heidelberg University)

H.Tanaka (Hokkaido Univ.), S.Okuzumi (Tokyo Tech), C.P. Dullemond (ITA)

ime =0.00e+000

Planet formation in size evolution

Barriers in dust coagulation

- Radial drift barrier for planetesimal formation (e.g., Adachi et al. 1976)
 - Dust grains have to "jump" the barrier
- Radial drift barrier for millimeter-wave observations (e.g., Beckwith & Sargent 1991)
 - Dust grains has to "jump" the barrier and we should "keep" them
- Fragmentation barrier (e.g., Blum & Münch 1993)
 - Dust should overcome high-speed collisions such as ~ 50 m/s
- Bouncing barrier (e.g., Zsom et al. 2010)

Possible solution

Porous dust aggregates

 Radial drift barrier for planetesimal formation

→ Rapid coagulation by large cross section (Okuzumi et al. 2012)

Radial drift barrier for millimeter-wave observations

→ Do they account for millimeter-wave emission? Opacity?

- Fragmentation barrier
 → Ice is more sticky than silicate (Wada et al. 2009)
- Bouncing barrier

→ Highly porous dust aggregates do not bounce (Wada et al. 2011)

Wada et al. 2009

Dust aggregate

radius : a, mass: m internal density: ρ

Possible solution

Porous dust aggregates

 Radial drift barrier for planetesimal formation

→ Rapid coagulation by large cross se (Okuzumi et al. 2012)

 Radial drift barrier for millimeter-wave observations

→ Do they account for millimeter-wave emission? Opacity?

- Fragmentation barrier
 → Ice is more sticky than silicate ²⁰⁰⁹)
- Bouncing barrier

→ Highly porous dust aggregates do not bounce (Wada et al. 2011)

Numerical simulations

$$u_{\text{col,crit}} = \begin{cases} 80 (r/0.1 \mu \text{m})^{-5/6} & \text{[m/s] for ice} \\ 8 (r/0.1 \mu \text{m})^{-5/6} & \text{[m/s] for silicate} \end{cases}$$

(Wada et al. 2009, 2013)

Laboratory experiments

Quarz (Colwell et al. 2003), SiO_2 , $MgSiO_3$ (Blum and Wurm 2000), Graphite, Al_2O_3 (Reisshaus et al. 2006), Ice (Gundlach and Blum 2015), CO_2 (Musiolik et al. 2016)

Dust aggregate

radius : a, mass: m internal density: ρ

Possible solution

Porous dust aggregates

 Radial drift barrier for planetesimal formation

→ Rapid coagulation by large cross sect (Okuzumi et al. 2012)

 Radial drift barrier for millimeter-wave observations

→ Do they account for millimeter-wave emission? Opacity?

- Fragmentation barrier
 → Ice is more sticky than silicate (Wada et 2009)
- Bouncing barrier

→ Highly porous dust aggregates do r bounce (Wada et al. 2011)

Coordination number : nc

Wada et al. 2011

Structure evolution of dust aggregates

(d) Self-gravitational compression

gravitational force

Kataoka et al. 2013b

→ Growth with fractal dimension of ~2 due to low-velocity collisions

Structure evolution of dust aggregates

(a) Hit-and-stick

Akimasa Kataoka (Heidelberg University)

Structure evolution of dust aggregates

(a) Hit-and-stick

(c) Gas compression

(d) Self-gravitational compression

compressive strength

$$P = rac{E_{
m roll}}{r_0^3} \phi^3$$
 (Kataoka et al. 2013a, AA

- external pressure
 - ram pressure of the gas
 - self-gravity

Planetesimal formation via fluffy aggregates

Dependence on the orbital radius

What is the observed "mm-sized grains"?

Opacity evolution

How can we understand porosity?

What are "mm-sized grains"?

Akimasa Kataoka (Heidelberg University)

orbital radius [AU]

100

orbital radius [AU]

Conclusions

- We investigate the the static compressive strength of highly porous aggregates (f<0.1)
 - we reveal the overall porosity evolution
 - the path avoids the three barriers: radial drift, fragmentation, and bouncing barriers

(Kataoka et al. 2013a, A&A, 554, A4, Kataoka et al. 2013b, A&A, 557, L4)

• Opacities are characterized by *af*

(Kataoka et al., 2014, A&A, 568, A42)

- Planetesimals are formed inside ~ 10 AU
- Fluffiness does not help for the radial drift barrier in outer disk.

How to observe fluffy aggregates?

Understanding opacity

(b) x>1, optically thin

(c) x>1, optically thick

absorption/scattering opacity

 \rightarrow Q_{abs}, Q_{sca} is calculated with Mie theory

 \mathcal{X}

Useful parameters

• size parameter

$$\equiv \frac{2\pi a}{\lambda}$$

 \cdot optical depth kx

-> derive the approximated equations

Understanding opacity : absorption

(b) x>1, optically thin

(c) x>1, optically thick

κ_{abs} is proportional to af
 we derive the piecewise formula of abs. opacity

