

Understanding the magnetic field structure in the star formation to the Galactic scales through the maser observations for Zeeman splitting and polarization

Sugiyama, Koichiro (Center for Astronomy, Ibaraki University)

Collaborators: Kenta Fujisawa; Yoshinori Yonekura

Table of contents

- 0. Brief introduction for masers
- 1. What's advantages of maser observations for the magnetic field?
- 2. Remarkable works of maser observations for the magnetic field
- 3. Summary

0. Brief introduction for masers

Interstellar masers

 \checkmark Masers in the star-forming regions

- Major : OH, H_2O , CH_3OH
- Minor : NH₃, H₂CO, SiO, radio RL

✓ Characteristics

- Much brighter than thermal lines
- <u>Narrow line width</u> : $\Delta v \sim 0.2-0.5$ km s⁻¹
- Compact size of spot : ~1-10 au
 - Some spots consist of core/halo (Minier+ 02)

$$\textcircled{\text{very bright}}: T_{\text{B}} \sim 10^7 \text{--} 10^{12} \text{ K}$$

European VLBI spectrum and map of the 6.7 GHz CH₃OH maser (Bartkiewicz+ 16).

<

Usable characteristics of masers

✓ Flux variability

- Various times-scales : < 1 day a few month 1 year <
 - Provide information in **0.1-1 au** spatial scales from Keplerian time-scale
- Remarkable variation : Periodic, Flaring
 - Periodic : stellar pulsation / binary system ?
 - Flaring : flare of exciting star / accretion burst / magnetic reconnection ?

Usable characteristics of masers

\checkmark Flux variability

- Various times-scales : < 1 day a few month 1 year <
 - Provide information in **0.1-1 au** spatial scales from Keplerian time-scale
- Remarkable variation : Periodic, Flaring
 - Periodic : stellar pulsation / binary system ?
 - Flaring : flare of exciting star / accretion burst / magnetic reconnection ?

✓ Proper motion with VLBI (a few milliarcsec (mas) spatial resolution)

- Enable us to detect tiny motions of **a few mas yr**⁻¹ on disk/outflow/jet
- Reveal 3-D velocity structure with LSR velocity information

Proper motion with VLBI

Wide-angle outflow and jet scenario observed in high-mass SFR Cepheus A (Torrelles+ 11). Proper motions of 22 GHz H_2O masers showed expanding motions emanated by wide-angle outflow, while a radio jet was observed by radio continuum observation.

Usable characteristics of masers

\checkmark Flux variability

- Various times-scales : < 1 day a few month 1 year <
 - Provide information in **0.1-1 au** spatial scales from Keplerian time-scale
- Remarkable variation : Periodic, Flaring
 - Periodic : stellar pulsation / binary system ?
 - Flaring : magnetic reconnection / flare of exciting star / accretion burst ?

 \checkmark Proper motion with VLBI (a few milliarcsec (mas) spatial resolution)

- Enable us to detect tiny motions of **a few mas yr**⁻¹ on disk/outflow/jet
- Reveal 3-D velocity structure with LSR velocity information

✓ Magnetic field strength and 3D structure

- Circular polarization => Zeeman splitting
- Linear polarization => Polarization vector
 - Convertible to the direction of the magnetic field axes

1. What's advantages of maser obs. for magnetic (*B*) field?

Importance of *B* field

✓ Launch outflow/jets and magnetic braking

- Removal of angular momentum
- Maintain accretion through disk
- ✓ Launch mechanism and morphology of outflow/jets affected by the strength and the configuration of the *B* field (Machida+ 08)
 - Outflow : low-velocity and hourglass-like, caused by strong *B* field and the magnetocentrifugal force
 - Jet : high-velocity and well-collimated, caused by weak *B* field and the magnetic pressure gradient force

3D MHD simulations to understand the outflow/jet launching mechanism and morphology in the star-forming core (Machida+ 08). These figures show the relation among velocities, collimations, \boldsymbol{B} field strength, and morphology.

e.g.) Dust pol. obs.

- ✓ Aligned dust by **B** field
- ✓ Measure polarization vector, convertible to the *B* field on the plane of sky
 - e.g., "hourglass" shape (e.g., Girart+ 06)

✓ Weak points

- Impossible to direct measurement of the strength of **B** field
 - may be estimated by comparing the gravitational force as an upper limit at collapse phase
- Hard to trace high-density area (> 10⁸ /cc)

e.g.) Zeeman splitting obs.

- Energy quantum state is split by the *B* field into multiple states
- ✓ Measure the strength of the **B** field directly!
- ✓ To date in thermal lines, measured from HI, OH, and CN (e.g., Crutcher+ 99; Falgarone+ 08)
 - Low-density (< 10^4 /cc) : HI, OH
 - High-density $(10^4-10^6 / cc)$: CN
- ✓ Weak points
 - Split coefficient is much smaller than thermal line-width : ~1 Hz/µG
 - Signal-to-noise ratio is not enough to detect circular polarized spectrum
- $\textcircled{\ }$ a few detections in the high-density tracer

CN Zeeman spectra of Stokes I (top) and V(bottom) in W3(OH) (Falgarone+ 08).

Advantages of the masers

- i. Narrower line-width and brighter emission than thermal lines
 - Enable us to measure for small Zeeman split with high S/N
- ii. Pumped in compact and high-dense cloud, called as "spot"
 - Enable us to trace higher-density area than thermal emissions
- iii. Both linearly and circularly polarized emission
 - Full stokes parameters (I, Q, U, V) usable to determine 3D **B** field structure
- iv. Combined with dynamics (3D velocity structure) information
 - Understand dynamical motions and magnetic structures, simultaneously

ii. High-density tracer (> 10^6 /cc)

$\checkmark n_{\rm H2} > 10^{6} \, / {\rm cc}$

- OH : 10⁵-10⁸ /cc (Cragg+ 02)
- $CH_3OH : 10^4-10^9 / cc (Cragg+ 05)$
- H_2O : 10⁸-10¹¹ /cc (Elitzer+ 92)
- $\checkmark B \propto n_{\rm H2}^{0.47 \pm 0.08}$ (Vlemmings 08)
 - Consistent with Crutcher (99) relation
 - Connect from low to high-density area

Zeeman splitting measurements extensible to high-density area !

Magnetic field strangth B vs the number density $n_{\rm H2}$ in high-mass SFR Cepheus A (Vlemmings 08).

iii. Full stokes (linear and circular)

✓ Masers linearly and circularly polarized **3D** *B* **field structure**

- Linear : 2D pol. vector on the plane of sky
- Circular : Strength and radial 1D pol. vector through Zeeman split

iv. Combined with 3D vel. structure

- ✓ Totally understanding through the compact gas cloud "spot"
 - Spatial distribution
 - Dynamics from 3D vel. structure
 - *B* field structure

e.g.) evloved AGB star W43A case

- 3D vel. structure well fitted by precessing jet model (Imai+ 02)
- Toroidal B field structure measured through linear pol. of H_2O masers (Vlemmings+ 06a)

↑ : Proper motions detected for H_2O masers in the evolved AGB star W43A (Imai+ 02). ↓ : Precessing jet model fit to 3D velocity structure of H_2O masers.

iv. Combined with 3D vel. structure

↑ : **B** field direction converted from linear pol. vector of the H_2O masers in W43A (Vlemmings+ 06a). ↓ : Toroidal **B** field model inferred of H_2O maser results.

↑ : Proper motions detected for H_2O masers in the evolved AGB star W43A (Imai+ 02). ↓ : Precessing jet model fit to 3D velocity structure of H_2O masers.

2. Remarkable works of maser obs. for the magnetic field

B field parameters of the masers

	ОН	CH ₃ OH	H_2O	15 I.b
ν [GHz]	1.6-1.7	6.7	22.2	
Coefficient [Hz/µG]	2-3	~10⁻⁴* (Jen 1951)	~10 ⁻³	
Trace	Edeg of HII region	Accretion disk	Outflow/ jet	$\sum_{\substack{n=0\\ n \neq n}} 0.06 \left[(Q^2 + U^2)^{1/2} \right]$
fraction L fraction C	~10-20% ~50-60%	<1-20% <1-5%	<1-10% <1-5%	Bol. Di Bol. D
Strength [mG]	~10-50	~10-100 *	~10-1000	$\begin{array}{c} 0 \\ 0.04 \\ 0.02 \end{array} \qquad $
Note.	Strongly affected by RM	* Large uncertainty of coefficient		0 00 0 0 0 00 0
Kef e.g., Szymczak & Gerard (09); Surcis+ (12, 15); Vlemmings (08, +11)				-5 -4.5 -4 -3.5 $-3Vler (km/s)$

 H_2O maser spectra in Cepheus A (Vlemming+ 06b)

Case 1. W75 N ~ rapidly evolution of outflow morphology and *B* field structures ~

High-mass star-forming region W75 N

- ✓ Part of Cygnus X region
- ✓ Distance: 1.30 kpc (Rygl+ 12)
- ✓ Three YSO candidates at different 42 evolutionary phase (Carrasco-Gonzalez+ 10)
 - VLA1: oldest
 - Index: -0.4 ±0.1 => optically thin, free-free
 - VLA2: younger than VLA1
 - Index: 2.2 ±0.3 => optically thick, free-free
 - VLA3: youngest
 - Index: **0.6 ±0.1** => thermal jet

H₂O maser distributions and motions

Rapidly change of spatial distribution and *B* field structure of H_2O maser in VLA2

- ✓ Spatial distribution of H₂O maser in VLA2 in ~8 yrs (Kim+ 13)
 - Spherical \Rightarrow Elongated to NE-SW

VLBI maps at 3 epochs (Torrelles+ 03; Surcis+ 11; Kim+ 13).

Rapidly change of spatial distribution and *B* field structure of H_2O maser in VLA2

✓ Surcis+ (14) detected rapidly changes of the **B** field structure in 7 yrs

- the direction of the B field : $+18 \Rightarrow +57 \text{ deg}$
- the strength of the B field : $345 \text{ mG} \Rightarrow 128 \text{ mG}$

Rapidly change of spatial distribution and *B* field structure of H_2O maser in VLA2

- ✓ Spatial distribution of H₂O maser in VLA2 in ~8 yrs (Kim+ 13)
 - Spherical \Rightarrow Elongated to NE-SW
- ✓ B field structure of H₂O maser in VLA2 in ~7 yrs (Surcis+14)
 - Direction : +18 \Rightarrow +57 deg
 - Strength : $345 \text{ mG} \Rightarrow 128 \text{ mG}$
- short-lived, isotropic, ionized wind in the strong *B* field predicted by MHD simulation ? (e.g., Machida+ 08; Seifried+ 12)
 - Collimated as being evolved ??

VLBI maps at 3 epochs (Torrelles+ 03; Surcis+ 11; Kim+ 13).

Verified by radio continuum obs.

- ✓ 1.3 cm continuum distribution was also changed in ~20 yr in VLA2 (Carrasco-Gonzalez+ 15)
 - Spherical \Rightarrow Elongated to NE-SW
- ✓ Verified short-lived, isotropic, ionized wind whose morphology evolves into elongated to NE-SW inferred from H₂O maser observations (dynamics & B) !!

Carrasco-Gonzalez+(15)

Alignment of the *B* direction ?

✓ Surcis+ (14) detected alignment of **B** field direction in VLA1 and VLA2

- VLA1 : +49 (±15) deg, VLA2 : +57 (±21) deg
- Nearly perpendicular filament structure traced by NH₃ emission ??

Case 2. Statistical study in starformation scale ~ relationship of the orientations between *B* field and outflow axes ~

B field vs outflow axes

Comparison of the **B** field orientation from CH_3OH maser obs. to the outflow axes (Surcis+ 13).

PDF and CDF of the projected angle between the **B** field and the outflow axes (Surcis+ 13).

Case 3. Statistical study in the Galactic scale ~ Galactic structure of the *B* field ~

'MAGMO' project through Zeeman splitting of OH masers

MAGMO : the Magnetic field of the Milky Way through OH masers (e.g., Green+ 12)
Pilot survey : 6 high-mass sources 280<*l*<295°, *IB*_{II}*l*~1-10 mG, Same orientation

4. Summary

Summary

 $\checkmark B$ field observations of the masers is usable

- Narrower line-width and brighter emission than thermal one
- Pumped in compact dense cloud $(10^{6}-10^{11} / cc)$
- Both linearly and circularly polarized (full stokes *I*, *Q*, *U*, *V*)
- Combined with dynamics (3D velocity structure) information
- \checkmark Remarkable works of the maser *B* field obs.
 - W75 N : short-lived, isotropic, ionized wind in the strong **B** field whose morphology evolves into elongations (e.g., Surcis+ 14; Carrasco-Gonzalez+ 15)
 - Statistical study (e.g., Surcsis+ 12, 13, 15; Green+ 12)
 - in the star formation scale : Alignment of the B field along the outflow axes
 - in the Galactic scale : Zeeman splitting measurements throughout the Milky Way 'MAGMO'