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0. Brief introduction for masers




Interstellar masers
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Usable characteristics of masers

v’ Flux variability \

* Various times-scales : < 1 day —a few month — 1 year <
* Provide information in 0.1-1 au spatial scales from Keplerian time-scale
* Remarkable variation : Periodic, Flaring
* Periodic : stellar pulsation / binary system ?
* Flaring : flare of exciting star / accretion burst / magnetic reconnection ?
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Flux variation monitor project results with Ibaraki (Hitachi) single-dish radio telescope.



Usable characteristics of masers

v’ Flux variability \

* Various times-scales : <1 day —a few month — 1 yea?
* Provide information in 0.1-1 au spatial scales from Keplerian time-scale

* Remarkable variation : Periodic, Flaring
* Periodic : stellar pulsation / binary system ?
* Flaring : flare of exciting star / accretion burst / magnetic reconnection ?

v’ Proper motion with VLBI (a few milliarcsec (mas) spatial resolution)
* Enable us to detect tiny motions of a few mas yr' on disk/outflow/jet
* Reveal 3-D velocity structure with LSR velocity information



Proper motion with VLBI
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Wide-angle outflow and jet scenario observed in high-mass SFR Cepheus A (Torrelles+ 11).
Proper motions of 22 GHz H,O masers showed expanding motions emanated by wide-angle
outflow, while a radio jet was observed by radio continuum observation.
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Usable characteristics of masers

v’ Flux variability \

* Various times-scales : < 1 day —a few month — 1 year <
* Provide information in 0.1-1 au spatial scales from Keplerian time-scale
* Remarkable variation : Periodic, Flaring
* Periodic : stellar pulsation / binary system ?
* Flaring : magnetic reconnection / flare of exciting star / accretion burst ?

v’ Proper motion with VLBI (a few milliarcsec (mas) spatial resolution)
* Enable us to detect tiny motions of a few mas yr' on disk/outflow/jet
* Reveal 3-D velocity structure with LSR velocity information

v Magnetic field strength and 3D structure
* Circular polarization => Zeeman splitting
* Linear polarization => Polarization vector
* Convertible to the direction of the magnetic field axes



1. What’s advantages of maser

obs. for magnetic (B) field?




Importance of B field

v" Launch outflow/jets and magnetic braking
* Removal of angular momentum

* Maintain accretion through disk

v" Launch mechanism and morphology of outflow/jets

-3 - -1 2
affected by the strength and the configuration of the - (B::i/[;‘:aoa)
B field (Machida+ 08) T R R 2o
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* Outflow : low-velocity and hourglass-like, caused by
strong B field and the magnetocentrifugal force

* Jet: high-velocity and well-collimated, caused by

/////

weak B field and the magnetic pressure gradient force

0.03 3

3D MHD simulations to understand the outflow/jet launching mechanism and 004 ~\"‘\ \ A e
morphology in the star-forming core (Machidat+ 08). These figures show the 005 =\ Y- sadaivt
relation among velocities, collimations, B field strength, and morphology. S . A 3



e.g.) Dust pol. obs.

27k

. L —
v Aligned dust by B field

v’ Measure polarization vector, convertible
to the B field on the plane of sky

* e.g., “hourglass” shape (e.g, Girart+ 06)
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v Weak points

* Impossible to direct measurement of the

strength of B field

* may be estimated by comparing the
gravitational force as an upper limit
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e.g2.) Zeeman splitting obs.

g oy
v" Energy quantum state is split by the B field

into multiple states

v" Measure the strength of the B field directly!
v’ To date in thermal lines, measured from HI,
OH, and CN (e.g, Crutcher+ 99; Falgarone+ 08)

* Low-density (< 10*/cc) :HI, OH
* High-density (10*-10° /cc) : CN

v Weak points

Split coefficient is much smaller than thermal
line-width : ~1 Hz/uG

Signal-to-noise ratio is not enough to detect
circular polarized spectrum

= a few detections in the high-density tracer

1.5

05 -

Stokes | (K)

0.005

Stokes V (K)
o
o
o
)

-0.005 -

0010 b vt e e e
-60 -55 -50 -45 -

LSR Velocity (km/s)

CN Zeeman spectra of Stokes / (top) and
V (bottom) in W3(OH) (Falgarone+ 08).



Advantages of the masers

Narrower line-width and brighter emissio

* Enable us to measure for small Zeeman split with high S/N

ii. Pumped in compact and high-dense cloud, called as “spot”

* Enable us to trace higher-density area than thermal emissions

1. Both linearly and circularly polarized emission
e Full stokes parameters (I, Q, U, V) usable to determine 3D B field structure

iv. CGombined with dynamics (3D velocity structure) information

* Understand dynamical motions and magnetic structures, simultaneously



ii. High-density tracer (> 10° /cc)

v ny, > 100 /cc
 OH : 10%-108 /cc (Cragg+ 02)
« CH,OH : 10%-10° /cc (Cragg+ 05)
* H,O : 108-10"" /cc (Elitzer+ 92)

4 — T _r H,0 Masers —
) =7
3 CH,0H Masers ]
v' B o< nH20.47 +0.08 (Vlemmings 08) fo .
* Consistent with Crutcher (99) relation ~ ’{
. . 2 - |
* Connect from low to high-density area
/ 102-108 /cc area
Crutcher (99)

HI/OH Zeeman

wZeeman splitting measurements
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Magnetic field strangth B vs the number density
N30 10 high-mass SFR Cepheus A (Vlemmings 08).



111. Full stokes (linear and circular)

v’ Masers linearly and circularly polarizec " 3D B field structure

* Linear :2D pol. vector on the plane of sky
* Circular : Strength and radial 1D pol. vector through Zeeman split

RCP LCP LCP RCP

RCP Rorth Stokes = RCP — LCP
definition (the IAU convention)

( » frequency » frequency
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the IEEE ' ’
VaY VaY

convention

Image credit: Green+ (14)



1v. Combined with 3D vel. structure

I
v Totally understanding through | Proper motion Ot haser
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T : Proper motions detected for H,O masers in the evolved
AGB star W43A (Imai+ 02). | : Precessing jet model fit to
3D velocity structure of H,O masers.
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1v. Combined with 3D vel. structure
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1 : Bfield direction converted from linear pol. vector of the T : Proper motions detected for H,O masers in the evolved
H,O masers in W43A (Vlemmings+ 06a). | : Toroidal B AGB star W43A (Imai+ 02). | : Precessing jet model fit to
field model inferred of H,O maser results. 3D velocity structure of H,O masers.



2. Remarkable works of maser

obs. for the magnetic field




B field parameters of the masers

v [GHz] 1.6-1.7 22.2 Z
4
Coefficient 2-3 ~10-4* ~103 7
[Hz/uG] (Jen 1951)
Trace Edeg of HII Accretion Outflow/ 006
region disk jet i
2 0.04
fraction LL ~10-20% <1-20% <1-10% -
fraction C  ~50-60% <1-5% <1-5% & °%
Strength ~10-50 ~10-100* ~10-1000 0.04
[mG] . 0.02
Note. Strongly * Large %’j 0 oZ
affected by uncertainty n O- o4
RM of coefficient 70’06 - | | | E
Ref. --- e.g., Szymczak & Gerard (09); Surcis+ (12, 15); Vlemmings (08, +11) 5 45 4 =35 -3

Vi (km/s)
H,0O maser spectra in Cepheus A (Vlemming+ 06b)



Casel. W/5 N

~ rapidly evolution of outflow

morphology and B field structures ~




High-mass star-forming region W75 N

1.3 cm continuum with VLA

v’ Part of Cygnus X region (Torrelles+ 97) =

v’ Distance: 1.30 kpC (Rygl+ 12) @0 -— VLA 1 (W 75N[Ba]) =

v Three YSO candidates at different = was o o
evolutionary phase (Carrasco-Gonzalez+ 10) o J

* VLAI: oldest
* Index: -0.4 +0.1 => optically thin,

58.0— - N N

DECLINATION (B1950)

free-free Va2
* VLAZ2: younger than VLAI RS ]
* Index: 2.2 0.3 => optically thick,
free-free ’

* VLA3: youngest
* Index: 0.6 0.1 => thermal jet
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ias VLALI : elongated NE-SW direction
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T e * Bipolar motion toward NE-SW
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Offset DEC. (arcsec)
0.8

VLAZ2 : spherical morphology

e Spherically expanding motion
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Rapidly change of spatial distribution and

B field structure of H,O maser in VLA2

v’ Spatial distribution of H,O maser in 120
VLA2 in ~8 yrs (Kim+ 13)
* Spherical = Elongated to NE-SW
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VLBI maps at 3 epochs
(Torrelles+ 03; Surcis+ 11; Kim+ 13).



Rapidly change of spatial distribution and
B field structure of H,O maser in VLA2

Declination offset (mas)
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v" Surcis+ (14) detected rapidly changes of the B field structure in 7 yrs
* the direction of the B field : 418 = +57 deg

* the strength of the B field: 345 mG = 128 mG

-10



Rapidly change of spatial distribution and

B field structure of H,O maser in VLA2

v’ Spatial distribution of H,O maser in
VLA2 in ~8 yrs (Kim+ 13)
* Spherical = Elongated to NE-SW

v’ B field structure of H,O maser in
VLA2 in ~7 yrs (Surcis+14)
* Direction: +18 = +57 deg
* Strength : 345 mG = 128 mG

w=short-lived, 1sotropic, 1onized
wind 1n the strong B field

predicted by MHD simulation ?
(e.g., Machida+ 08; Seifried+ 12)

* (ollimated as being evolved ??

Declination offset (mas)
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VLBI maps at 3 epochs
(Torrelles+ 03; Surcis+ 11; Kim+ 13).



Verified by radio continuum obs.

v' 1.3 cm continuum distribution was

also changed in ~20 yr in VLA2

(Carrasco-Gonzalez+ 15)

* Spherical = FElongated to NE-SW

1
o
(%)

1
o

v’ Verified short-lived, isotropic,
1onized wind whose morphology
evolves into elongated to NE-SW
inferred from H,O maser
observations (dynamics & B') !!
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Carrasco-Gonzalez+ (15)



Alignment of the B direction ?

Declination offset (mas)
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v" Surcis+ (14) detected alignment of B field direction in VLLA1 and VLA2
* VLAI: +49 (+15) deg, VLA2 : +57 (+21) deg

Nearly perpendicular filament structure traced by NH,; emission ??
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Case 2. Statistical study in star-

formation scale

~ relationship of the orientations
between B field and outflow axes ~




Declination offset (mas)
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B field vs outflow axes

v Measured B field of CH;OH masers

v" Orientation of the B field along the
outflow axes, preferentially

* Atleast, on scales of 10-100 au

in ~20 high-mass YSOs (Surcis+ 12, 13, 15)
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Comparison of the B field orientation from CH;OH maser
obs. to the outflow axes (Surcis+ 13).
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the B field and the outflow axes (Surcis+ 13).



Case 3. Statistical study in the
Galactic scale

~ Galactic structure of the B field ~




‘MAGMO?’ project through

Zeeman splitting of OH masers

4l 284.694-0361 Ui Zeeman Negative B
—+ Zeeman Positive B
Extragalactic RM Positive B
Pulsar RM Negative B
Pulsar RM Positive B

Galactic Latitude
Rayleighs

Green+ (12)

290° 285°
Galactic Longitude

* MAGMO : the Magnetic field of the Milky Way through OH masers (e.g., Green+ 12)
* Pilot survey : 6 high-mass sources 280</<295°, |B;|~1-10 mG, Same orientation




4. Summary




v’ B field observations of thm“

e Narrower line-width and brighter emission than thermal one
* Pumped in compact dense cloud (10°-10'" /cc)
* Both linearly and circularly polarized (full stokes I, Q, U] V)

* Combined with dynamics (3D velocity structure) information

v’ Remarkable works of the maser B field obs.

* W75 N : short-lived, isotropic, ionized wind in the strong B field whose
morphology evolves into elongations (e.g., Surcis+ 14; Carrasco-Gonzalez+ 15)
e Statistical Study (e.g., Surcsist 12, 13, 15; Green+ 12)
* in the star formation scale : Alignment of the B field along the outflow axes

* in the Galactic scale : Zeeman splitting measurements throughout the Milky Way
‘MAGMO’



