3D GRMHD simulations of accretion flows and relativistic jets — for cosmic ray accelaration

Akira MIZUTA(RIKEN)

Toshikazu Ebisuzaki (RIKEN) Toshiki Tajima (UCI) Shigehiro Nagataki (RIKEN)

DTA Symposium@NAOJ 16.11.25Mizuta + in prep.

OUTLINE

- Introduction AGN jet
- GRMHD simulations of black hole and accretion disks
- Particle acceleration by wakefield acceleration for ultra high energy cosmic rays (<--> Fermi acceleration model)
- Summary

AGN and AGN Jets are laboratories for....

- Supermassive black hole M~10⁶-10¹⁰ M_sun
- Accretion disks
 - disk type & geometry (standard disk, ADAF, RIAF etc.)
 - angular momentum transport
 (B-filed amplification (Magnetorotational instability))
- jets
 - how to launch jets
 - how to collimate outflows and how to keep collimation
 - how to accelerate to relativistic bulk velocity (Γ ~10)
- high energy astrophysics
 - gamma-ray blazars (on-axis view, multiwavelength radio to high energy gamma-ray)
 - candidate object for particle accelerator of ultra-high energy cosmic rays

M87 radio observations

M87 radio observation Hada +(2011)

- M87 D=16.7Mpc
- $M_{BH} \sim 3.2 6.6 \times 10^9 M_sun$
- Location of the central BH is near the radio core by analysis of several bands of radio observations.
- It is consistent that the shape of the jet near the core is not conical but parabola.
- Rim brightening @ 100Rs

Relativistic jet launched from BH+accretion disk

- Central Engine
 - -Black Hole(BH) + accretion disk
 - -B filed amplification
- •relativistic jet (Γ~10 for AGN jet)
 - -How to launch the jet is also a big problem for astrophyics.

 Blandford-Payne (magnetic centrifugal force, B&P 1982)

 Blandford-Znajek (general rela. + B filed effect, B&Z 1977)

 or others?

UHECRs? Alfven waves **B-filed** (MRI)

GRMHD simulations have been done in 2D & 3D (Koide+2002,McKinney, 2004,2006 Komissarov+2005 2009, Nagataki 2009, Takahashi (2016) etc...

Basic Equations : GRMHD Eqs.

GM=c=1, a: dimensionless Kerr spin parameter

$$\begin{array}{ll} \frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}\rho u^{\mu})=0 & \text{Mass conservation Eq.} \\ \partial_{\mu}(\sqrt{-g}T^{\mu}_{\nu})=\sqrt{-g}T^{\kappa}_{\lambda}\Gamma^{\lambda}{}_{\nu\kappa} & \text{Energy-momentum conservation Eq.} \\ \partial_{t}(\sqrt{-g}B^{i})+\partial_{j}(\sqrt{-g}(b^{i}u^{j}-b^{j}u^{i}))=0 & \text{Induction Eq.} \\ p=(\gamma-1)\rho\epsilon & \text{EOS (y=4/3)} \end{array}$$

Constraint equations.

$$\frac{1}{\sqrt{-g}}\partial_i(\sqrt{-g}B^i) = 0 \text{ No-monopoles constraint}$$

$$u_\mu b^\mu = 0$$
 Ideal MHD condition $u_\mu u^\mu = -1$ Normalization of 4-velocity

Energy-momentum tensor

$$T^{\mu\nu} = (\rho h + b^2)u^{\mu}u^{\nu} + (p_{\rm g} + p_{\rm mag})g^{\mu\nu} - b^{\mu}b^{\nu}$$

$$p_{\rm mag} = b^{\mu}b_{\mu}/2 = b^2/2$$

$$b^{\mu} \equiv \epsilon^{\mu\nu\kappa\lambda}u_{\nu}F_{\lambda\kappa}/2 \quad B^i = F^{*it}$$

GRMHD code (Nagataki 2009,2011)

Kerr-Schild metric (no singular at event horizon)
HLL flux, 2nd order in space (van Leer), 2nd or 3rd order in time
See also, Gammie +03, Noble + 2006
Flux-interpolated CT method for divergence free

Initial Condition

Fisbone-Moncrief (1976) solution – hydrostatic solution of tori around rotating BH (a=0.9, rH~1.44), $l_* \equiv -u^t u_\phi$ =const =4.45, $r_{\rm in}$ =6. > $r_{\rm ISCO}$ With maximum 5% random perturbation in thermal pressure.

Units L: Rg=GM/c² (=Rs/2), T: Rg/c=GM/c³, mass: scale free $\sim 1.5 \times 10^{13} \text{cm} (M_{BH}/10^8 M_{sun}) \sim 500 \text{s} (M_{BH}/10^8 M_{sun})$

Magnetized jet launch

movie

Low mass density and electromagnetic flux along the polar axis. Intermittent

Plasma beta(P_{th} /P_{mag}) & magnetic pressure

Highly non-axis symmetric mode is excited.

Filamentaly structure inside the disk with thickness ~0.5 Rg

Mizuta + in prep.

- •B-filed is well amplified.
- Mass accretion rate shows short time variability (~ a few tens)
 => consistent with MRI growth rate for λ~0.5Rg ~8 grids size ~filamentaly structure
- Recurrence rate
 ~ a few hundreds
 => consistent with high
 resolution local shearing
 box simulations.
 (high β state ⇔ low β state)

 τ ~ 10 $\Omega_{\rm K}$ ~ 100 Rg/c

(Stone et al. 1996, Suzuki & Inutsuka 2009, O'Neill et al. 2011)

- •B-filed is well amplified.
- Mass accretion rate shows short time variability (~ a few tens)
 => consistent with MRI growth rate for λ~0.5Rg ~8 grids size ~filamentaly structure
- Recurrence rate
- ~ a few hundreds
- => consistent with high resolution local shearing box simulations. (high β state ⇔ low β state)

$$\tau$$
~ 10 $\Omega_{\rm K}$ ~ 100 Rg/c

(Stone et al. 1996, Suzuki & Inutsuka 2009, O'Neill et al. 2011)

outflow power (matter)

BZ-effect & outflow properties

Electric-magnetic luminosity@ horizon is sometimes positive.==> BZ effect works.

- But only ~1% in the jet
- Short time variability on electricmagnetic luminosity in the jet.
 This is similar with mass accretion rate.
- About 1% of poloidal component of the Alfven flux (disk) goes to the jet.
- Consistent with Ebisuzaki & Tajima model

Cosmic-ray up to ~10²⁰eV

Cosmic-ray up to ~10²⁰eV

Cosmic-ray up to ~10²⁰eV

Active galactic nuclei (AGN) jets are one of strong candidate objects for UHECR accelerator.

Wakefield acceleration (Tajima & Dawson PRL 1979)

Acceleration mechnism by interaction between wave and plasma.

$$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)$$

Osillation by Electrifield \Rightarrow v (ossilation up, down) vxB force \Rightarrow ossilation forward and backward.

 $|\mathbf{v}| \sim c \Rightarrow$ large amplification motion by $\mathbf{v} \times \mathbf{B}$. (8 shape motion).

If there is gradient in E^2 , charged particles feel the force towars lees E^2 side. = "Ponderamotive force"

Effective acceleration for I~10¹⁸W/cm² (relativistic intensity). Experimentally observed.

Relativistic Alfven wave can be applied to wakefield acceleration. (Takahashi+2000, Chen+2002, Lyubarusky 2006, Hoshino 2008)

AGN: UHECR accelarator?

Wakefield acceleration model (excited by Alfven wave) (Ebisuzaki & Tajima 2014) Relativistic Alfven wave in the jet => electric-magnetic wave

$$a = \frac{eE}{m_e \omega_A c} = 2.3 \times 10^{10} \left(\frac{\dot{M}}{0.1 \dot{M}_c}\right) \left(\frac{M_{\rm BH}}{10^8 M_{\odot}}\right) >>1$$

nonlinear & relativistic Alfven mode for Standard-disk (Shakra & Sunyaev (1973) is assumed)

Strength parameter a₀

In our numerical GRMHD simulation,

- So many electric magnetic flares are observed in the jet.
- Disk activities show MRI growth and eruption of Alfven waves.

We can estimate the strength parameter a_0 as,

$$a_0 = \frac{eE}{m_e \omega_{\rm A} c} = 7.6 \times 10^{12} \left(\frac{M}{10^8 M_{\odot}}\right)^{1/2} \left(\frac{\dot{M}_{\rm av}}{10^{-2} L_{\rm Ed}}\right)^{1/2}$$

Strength parameter highly exceeds unity.
The AGN jet can be good accelerator via wake-field acceleration.

Summary

3D GRMHD simulations of rotating BH+accretion disk for the analysis of wakefield acc.

- B filefd amplification
- Electromagnetic flux @ horizon (BZ effect)
- Electric magnetic flares in the jet
- consistent with Ebisuzaki & Tajima model
- a₀ ~10¹² >>1: good accelerator for UHECRs via wakefiled acceleration

Future works

- Higher resolution calculations are necessry to resolve fastest growing mode of MRI
- Different initial B-field topology