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Motivation

% Massive stars ( > 8M,, )
formation process is no clearly
understand

’0

»» Massive stars significantly affect
the evolution of the universe

 stellar radiation feedback

* inject kinetic energy, thermal
energy

« polluted gas into interstellar

CISCO (J,H,K)

space / stellar wind / ve star Fo _
supernova explosion

http://www.nao.ac.jp/gallery/weekly/2014/20141216-w3-main.html

Clarifying Massive stars formation process is
important in astrophysical study !!!
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Introduction

Massive outflows are
scaled-up versions
of low-mass outflow ?
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Introduction

What's the Magnetic Outflow ?

— transfer angular momentum
by magnetic and rotation effects

CISCO (J, H, K')
f Japan February 13, 2001

-33° g8 100 um E :35°'é;— b Ng.;iamu

Strong magnetic field “‘ | i

o e
observed in massive e i

S sl .;‘- © mec 6334 i §“35° T

star forming regions " | & Pt /
(Li et al. 2015 / Falgarane et : ‘\\ / - I
a|_ 2008) : ./ - 6 \ 'ita‘_‘;|i1\35°58'— A

(J2000 equatorial coordinates)

Li et al. (2015)



Introduction

Objects J/M (cm?/s)

Angular momentum problem Molecular Cloud Core ~ 1021-22

specific angular momentum
should decrease a factor of 10-°
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/| Low-mass Stars
- Jet, Outflow can transfer

angular momentum ~99.9%
(Tomisaka 2000) W,

— How are massive stars ?



Methods

Bonnor-Ebert density profile

central density:3.8x10-1°gcm3
isothermal temperature : 40K

Resistive-MHD eq

Op B
E-FV-(,D’U)—O

ov

1
pE-Fp(v-V)v = _VP_EBX (VxB)—pVo

%—?sz(va)—l—anB

V3¢ = 4nGp

barotropiceq: P = p(p)

Protostar is formed
— remove the gas n > ny,
inr< r.sink

sink radius : 1AU

(Machida & Hosokawa. 2013)



Methods

ratio of thermal to gravitational energy

f Cp, Mg Ry By Qo

Model Bo "
|Sma|l I (Mp]  [pe]  [wG] (107 s7Y)
%”‘ A 1.4 39 23 3.3
| B 3.4 77 56 5.1
S| ¢ 8.4 192 140 8.0
B .1 ags 028 oo » 0.02 0.2
g| E 34 771 560 16

F 67 1542 1120 23

rlia
Q
q
t.Q|
(9]

prepared 6 model
controls the cloud mass, initial cloud stability

* mass accretion rate is large in an initially thermally
unstable cloud

* magnetic field strength: B, is adjusted to y = 2

—each model has different magnetic field strengths



RGSUltS Mass accretlon rate agalnst protostellar mass

des/dt [Msunyr_1]
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L S-S oy oscillation is caused,
initially more e by GI of Disk
unst_able cloud %10-2 | o
— higher % |
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4 depend on
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‘
O averaged mass accretion rates for 0 < tps < tend
+ averaged mass accretion rates for 0 < tps < 215
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the theoretical prediction
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Outflow of each model

Results
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Discussion : Comparison with Observations
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Discussion : Comparison with Observations
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Discussion : Comparison with Observations
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Even if magnetic field is weak,
ReSU ItS Outflow can drive when
10 - — accretion rate is small.
I 7’
A O O O
7’
10" B o o x P s x
a c 0 O ,x/
D O O & x
e g O 9% R X ‘z
I F X % % |
mass accretion| - oton @ |
rate Large . o~ 2 3 | 5 | 10 filed 8 |
Magnetic field

strong
accretion

rate extremely Large



Conclusion & Future Works

v" investigate the relation between mass accretion onto the
protostar and the magnetically driven outflow

v" When the initial prestellar cloud has a strong magnetic field,
the outflow is powerful at any accretion rate

v The physical quantities derived from our simulations
favorably agree with observation in massive outflow.
outflow mass / momentum / kinetic energy /
outflow rate / kinetic luminosity / momentum flux /

v" Both low- and high-mass stars form by a common
fundamental mechanism
— must ultimately consider various physical effects.
turbulence / radiation effects / etc...



Conclusion & Future Works

Change mass accretion rate

and magnetic strength v Compare magnetic
pressure to ram

— Even if magnetic field is pressure

weak, Outflow can drive when — if magnetic pressure

. _ A
accretion rate is small. strong, outflow driven”

Like low-mass stars.

. e v angular momentum
—Even if magnetic field is J

transfer
strong, —» What is the most
Outflow cannot drive when efficient ?

accretion rate is extremely
Large.






Methods : * Failed Outflow”

Model f K My R, By () Bo Yo
[Ma]  [pc]  [nG]

6 2 777 0.04

prepared mOdel A 1.4 3 568 0.198 5.18 0.5 0.02 0.02

5 3.11 0.008
ContrOIS 10 1.55 0.0018

initial cloud stability : e
B 3.4 3 13.6 0.198 124 0.2 0.02 0.02

5 7.46 0.008
10 3.73 0.0018

+ 2 46.6 0.04

C 8.4 3 34.1 0.198 31.1 0.08 0.02 0.02

5 18.6 0.008
10 9.32 0.0018

set up Mass-to-Flux ratio 2 93.2 0.04
D 17 68.1 0.198 62.2 0.04 0.02 0.02

M M 37.3 0.008
= (—)/(—) 10 93.2 0.0018
(I) (I) cri 2, 3, 5, 10 186 0.04

. E 33.6 136 0.198 124 0.02 0.02 0.02

change Magnetic strength iy 2008
10 37.3 0.0018

2 373 0.04

F 67.2 3 272 0.198 249 0.01 0.02 0.02

5 149 0.008
10 74.6 0.0018




