Jeans Instability of Filamentary Clouds Threaded by Vertical Magnetic Fields

Tomoyuki Hanawa (U. Chiba) Takahiro Kudo (U. Nagasaki) Kohl Tomisaka (NAOJ)

Clumps form filamentary clouds through fragmentation longitudinal magnetic field

vertical magnetic field

this work

cf. Nakamura+ 93, 95

Equilibrium model: Longitudinal Magnetic Field

magnetohydrostatic configuration

Vertical Magnetic Field

symmetric around the axis

$$\rho(r) = \rho_0 \left(1 + \frac{r^2}{8H^2} \right)^{-2}$$

$$B_z(r) = B_0 \left(1 + \frac{r^2}{8H^2} \right)^{-1}$$

$$4\pi G \rho_0 H^2 = c_s^2 + \frac{B_0^2}{8\pi \rho_0}$$

supported in part by magnetic fields. Stodolkiewicz 63

B_φ: hoop stress cf. Fiege & Pudritz 00

2D Flattened

Idealized Equilibrium Model

$$H^2 = \frac{c_s^2}{4\pi G \rho_c},$$
 1D model + uniform B

$$\boldsymbol{B}_0 = B_0 \boldsymbol{e}_x,$$

isothermal cloud

3D perturbation

$$\rho(x, y, z, t) = \rho_0(x, y) + \varrho(x, y)e^{\sigma t}\cos kz$$

$$\beta = \frac{8\pi \rho_c c_s^2}{B_0^2}$$

Equilibrium

Ideal MHD Eq.

$$\rho_0 = \rho_c \left(1 + \frac{x^2 + y^2}{8H^2} \right)^{-2}, \qquad \frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \boldsymbol{v}),
H^2 = \frac{c_s^2}{4\pi G \rho_c}, \qquad \frac{d\boldsymbol{v}}{dt} = -c_s^2 \nabla \ln \rho - \nabla \psi + \boldsymbol{j} \times \boldsymbol{B},
\boldsymbol{B}_0 = B_0 \boldsymbol{e}_x, \qquad \frac{\partial \boldsymbol{B}}{\partial t} = \nabla \left(\boldsymbol{v} \times \boldsymbol{B} \right),$$

x: magnetic field, z: filament axis $j = \frac{\nabla \times B}{4\pi}$, $c_{\rm s}$: sound speed

$$egin{aligned} oldsymbol{j} &= rac{oldsymbol{
abla} imes oldsymbol{B}}{4\pi}, \ \Delta \psi &= 4\pi G
ho. \end{aligned}$$

$$\rho = \rho_0 + e^{\sigma t} \varrho(x, y) \cos kz,$$

$$\boldsymbol{\xi} = e^{\sigma t} \left(\xi_x \cos kz \boldsymbol{e}_x + \xi_y \cos kz \boldsymbol{e}_y + \xi_z \sin kz \boldsymbol{e}_z \right),$$

$$\boldsymbol{B} = \boldsymbol{B}_0 + e^{\sigma t} \left(b_x \cos kz \boldsymbol{e}_x + b_y \cos kz \boldsymbol{e}_y + b_z \sin kz \boldsymbol{e}_z \right),$$

$$\boldsymbol{J} = e^{\sigma t} \left(j_x \sin kz \boldsymbol{e}_x + j_y \sin kz \boldsymbol{e}_y + j_z \cos kz \boldsymbol{e}_z \right),$$

$$\psi = \psi_0 + e^{\sigma t} \delta \psi(x, y)$$

Numerical Methods

Displacement vector

$$\delta\varrho = -\frac{\partial}{\partial x} \left(\rho_0 \xi_x\right) - \frac{\partial}{\partial y} \left(\rho_0 \xi_y\right) - k\rho_0 \xi_z,$$

$$b_x = -B_0 \left[\frac{\partial}{\partial y} \xi_y(x, y) + k \xi_z\right],$$

$$b_y = B_0 \frac{\partial \xi_y}{\partial x},$$

$$b_z = -B_0 \frac{\partial \xi_z}{\partial x},$$

$$j_x = \frac{1}{4\pi} \left(\frac{\partial b_z}{\partial y} + k b_y\right),$$

$$j_y = -\frac{1}{4\pi} \left(k \delta b_x + \frac{\partial b_z}{\partial x}\right),$$

$$j_z = \frac{1}{4\pi} \left(\frac{\partial b_y}{\partial x} - \frac{\partial b_x}{\partial y}\right).$$

$$\delta\psi(\mathbf{r}) = \int \mathbf{G}(\mathbf{r}, \mathbf{r}') \varrho(\mathbf{r}') d\mathbf{r}'$$

$$\boldsymbol{\xi} = \int \boldsymbol{v} dt$$

$$ho_0 rac{d^2 \boldsymbol{\xi}}{dt^2} = \boldsymbol{F}(\boldsymbol{\xi}),$$
 $ho_0 \sigma^2 \boldsymbol{\xi} = \left(\boldsymbol{A} + rac{B_0^2}{4\pi} \boldsymbol{C} \right) \boldsymbol{\xi}.$

Force is proportional to ξ .

generalized eigenvalue problem

$$\left| \boldsymbol{A} + \frac{B_0^2}{4\pi} \boldsymbol{C} - \rho_0 \boldsymbol{I} \right| = 0$$

LAPACK Numerical Library

A perturbed quantity is expressed as a function of ξ .

Finite Difference Eq.

staggered mesh

$$\xi_z, \varrho, \delta\psi, b_x, j_y$$
 x, y sym

$$\xi_x, b_z$$
 x anti, y sym

•
$$\xi_y$$
, j_z x sym, y anti

$$\varrho_{i,j} = \frac{\rho_{0,i+1/2,j}\xi_{i+1/2,j} - \rho_{0,i-1/2,j}\xi_{i-1/2,j}}{\Delta x} - \frac{\rho_{0,i,j+1/2}\xi_{i,j+1/2} - \rho_{0,i,j-1/2}\xi_{i,j-1/2}}{\Delta y} - k\rho_{0,i,j}\xi_{z,i,j}$$

2nd order accuracy

Boundary (1) Fixed

(2) Free

$$\xi_x, \xi_y, \xi_z = 0$$
 for $x > n_x \Delta x$ or $y > n_y \Delta y$

$$\frac{\partial \boldsymbol{\xi}}{\partial x} = 0 \quad \text{for } x > n_x \Delta x$$

$$\frac{\partial \boldsymbol{\xi}}{\partial y} = 0 \quad \text{for } y > n_y \Delta y$$

$$\frac{\partial \boldsymbol{\xi}}{\partial y} = 0 \quad \text{for } y > n_y \Delta y$$

Fixed Boundary

Growth rate

$$rac{\sigma^2}{4\pi G
ho_{
m c}}$$

$$\Delta x = \Delta y = 0.6 H,$$

$$n_x = n_y = 40$$

Eigen function kH = 0.2 normalization $\xi_z(0,0) = -H$

Change in B

$$kH = 0.2$$

$$\xi_z(0,0) = -H$$

Further strong magnetic field (kH = 0.2)

$$1/\beta = 0.375$$

Enlargement

$$1/\beta = 0.375$$
, $kH = 0.2$

Flow in the yzplane (x = 0)

$$kH = 0.2, 1/\beta = 0.0$$

$$kH = 0.2, 1/\beta = 0.125$$

Free boundary

incompressive mode (cf. Nagai+98)

Free boundary kH = 0.2, $\beta = 0.5$

Free boundary kH = 0.05, $\beta = 2$

Summary

- Vertical (uniform) magnetic field works against fragmentation.
- Compressible mode is suppressed by rather weak magnetic field.
- Incompressible mode survives even when B is extremely strong, if the magnetic field is not fixed on the boundary.
- Weak magnetic field affects flow in the low density region.