遷移段階円盤Sz91のサブミ リ波および近赤外線を用いた 高分解能観測

塚越 崇(茨城大学)

百瀬宗武(茨城大), 橋本淳(U. Oklahoma), 工藤智幸(NAOJ), S.Andrews(CfA), 齋藤正雄(JAO/NAOJ), 北村良実(JAXA), 大橋永芳(NAOJ), D.Wilner(CfA), 川辺良平(JAO/NAOJ), SEEDS project member

Transition Disk

- 近/中間赤外線フラックスの減少
 - 円盤内側の穴構造を示唆
- 円盤進化・惑星系形成の理解へのキーとなる天体

SED v.s. Direct Imaging

Brown+2009

Transition Disk Obj.: Sz91

- •特徴的なSED [Romero+12]
 - IR超過無し Class III
 - ~20µmに大きなdip
 - ~100µmに超過

- 大きな穴構造
- cold dustが多く残存

Transition Disk Obj.: Sz91

AzTEC/ASTE 1.1mm

SUrvey[Kawabe+13]

- 近傍星形成領域のマッピングサ ーベイ(Lup,Cha,Oph)
- 分解能~30"
- Sz91@1.1mm
 - 27.2±6.0 mJy
 - 観測領域内214個classIIIの中で
 唯一の検出

円盤構造は? -> 高分解能観測へ

Observation

- Submillimeter Array
 - 345GHz continuum: Compact and VEX
 - 0.5-1.5" resolution
 - CO(3-2) line: Compact
 - 2-5" resolution

- HiCIAO/Subaru
 - Ks-band polarized intensity
 - ~0.2" resolution
 - SEEDs project survey [Tamura+2009]

SMA

SMA 345GHz連続波

- F(345GHz)=32.1±3.6 mJy
- ダスト円盤サイズ: Rout=170 AU
- 星の位置にピーク無し => ダストのdepletion/clearing

K-band Polarized Intensity(PI)

- 三日月状の放射
 - 偏光角は中心対称に分布
 - サブミリ波放射の内側に分布
- 南北にギャップ構造
 - inner holeの存在を示唆
 - サブミリ波とconsistent

円盤内側での散乱光

Rin=65AU, inc.=40deg.
楕円フィッティングより

(a) Ks-band PI + 345 GHz

arcsec

set

0 - 0

 \cap

(b) Ks-band PI + pol. angle

SMA CO(3-2)輝線

• 中心星付近にピーク

- 南北方向に速度勾配
 - ダスト円盤長軸方向と consistent

- ・回転円盤を示唆
 - Rout=420AU

• 1.5-6.1 km/s

円盤構造: SEDフィ

- ・モデリング
 - 2コンポーネントモデル
 円盤 + inner hot component
- 円盤モデル: power-law profile [Kitamura+02]

 - 温度分布: Tin(r/Rin)-q
 - g/d比: 100:1
 - κ_ν [Adams+1988]

hot component: 単温graybody

 $S_{\lambda} = B(\lambda, T_{\rm c})[1 - \exp(-\kappa_{\nu}\Sigma_{\rm c})] \times \Omega_{\rm c}$

Parameter	Fixed Value
$M_{\star}~(M_{\odot})$	0.49^{1}
$A_{\rm V} \ ({\rm mag})$	2.0^{1}
$T_{\rm eff}$ (K)	3724^{1}
$R_{\rm in}$ (AU)	65
$R_{\rm out}$ (AU)	170
i (degree)	40.0
p	1.5
q	0.5

 Σ []

円盤構造: SEDフィッティング

• 円盤放射で>70µmデータを再現

Parameter	Value
Stellar parameters	
$R_{*}~(R_{\odot})$	$1.29 {\pm} 0.03$
T_* (K)	4148 ± 55
$L_*~(L_{\odot})$	$0.49 {\pm} 0.02$
Cold outer disk	
$T_{\rm in}$ (K)	32.5 ± 3.9
$\Sigma_{\rm in}^{1} ({\rm g}~{\rm cm}^{-2})$	$0.67{\pm}0.03$
eta	$0.5 {\pm} 0.1$
$M_{\rm disk}^{1} (10^{-3} M_{\odot})$	$2.4{\pm}0.8$

(既知の)Transition Diskの中で最も軽い円盤 [Andrews+2011]

g/d=100:1

円盤構造: SEDフィッティング

 10^{-9}

- Hot componentを追加
 - ~20µmデータを再現

 ベストフィットとなる[T_c, Σ_c, Ω_c]をχ²平面で探す
 初期値を変えて6000 runs

円盤内側(inner hole)にhot dustが存在

- optically thin --- 186K, Mc=3x10⁻⁹ M₀
- optically thick --- 172K, Mc> $6x10^{-7}$ M \odot

Implications of hot component 1

- 局所的な放射源がinner holeにある
 - 周惑星系円盤
- ・ 光学的に厚い周惑星系円盤とすると[e.g.
 D'Angelo+03]
 - 幾何学的に薄い円盤であればΩ。-> R~60R。
 - 3-65AUのヒル半径より十分に小さい

• T_c=172 K

Implications of hot component 2

• 中心星に照らされたリング構造

- 単温graybodyによるSED再現
 =>広がった円盤ではなく'リング'構造
- Tc -> リングの位置 [円盤温度分布を外挿]
 - R=2.0AU (optically thin: 186K)
 - R=2.3AU (optically thick: 172K)
- Ωc -> リングの幅
 - optically thin: dR>53AU
 - optically thick: dR=0.01AU

Implications of hot component 2

• 中心星に照らされたリング構造

- 単温graybodyによるSED再現
 =>広がった円盤ではなく'リング'構造
- Tc -> リングの位置 [円盤温度分布を外挿]
 - R=2.0AU (optically thin: 186K)
 - R=2.3AU (optically thick: 172K)
- Ωc -> リングの幅
 - optically thin: dR>53AU
 - optically thick: dR=0.01AU

Summary

- Transition disk(TD)天体Sz91の高分解能観測
 - submm, NIR
- 円盤構造を空間分解
 - 大きいinner hole(~65AU)
 - 既知のTDの中では最も軽い円盤
- 穴内にhot dustが残存
 - 周惑星円盤のような局所的な放射源
 - 2.3AUにある光学的に厚いリング
- ALMA cycle1による高分解能&高感度観測へ
 - 穴内におけるダストとガスの分布
 - ガスの運動

