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惑星形成理論
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1m0.1μm 1km 102-4km

星間物質 微惑星
惑星

ダスト合体成長

熱運動 回転速度差,
沈殿速度差,乱流拡散

暴走成長 寡占成長

(重力不安定?)

中心星落下
問題

ダストの運動はガスとの摩擦で決まる
→ダストの内部構造(=サイズ・密度)が重要

衝突破壊/ 
跳ね返り問題
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空隙率

6

近年のダスト成長計算により
ダストは高空隙率構造になることがわかった

cf). Wada et al. 2007, 2009, 2011, Suyama et al. 2008,2012, Okuzumi et al. 2009,2012

合体成長
一定密度

非現実的

合体成長
空隙を考慮

現実的



Suyama et al. 2008
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1m 1km 102-4km 半径

衝突圧縮

内部密度

1g/cm3

10-5g/cm3

空隙を考慮した惑星形成

cf). Wada et al. 2009, 
Okuzumi et al. 2009,2012 ,
Suyama et al. 2008,2012

1μm

微惑星星間物質

？別の圧縮過程が必要

Okuzumi et al. 2012

Wada et al. 2009
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1μm

微惑星星間物質

？

R

gravity
gas

ガス圧による静的圧縮
自己重力による
静的圧縮

別の圧縮過程が必要

本研究は高空隙ダストの静的圧縮過程を調べる

空隙を考慮した惑星形成
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本研究の概要

2. 原始惑星系円盤におけるダストの内部構造進化を求める : 
ガス圧と自己重力を考慮

1. N体計算を用いてダストの圧縮強度を求める

Akimasa Kataoka et al.: Static compression of porous dust aggregates
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Fig. 13. Same as Figure 12, but plotted with linear scale of � and
reversal of xy axis to compare with previous studies (see Figure 4 in
Seizinger et al. (2012)). The dotted line is the result of numerical sim-
ulations in the high density region (� & 0.1) in Seizinger et al. (2012)
and the thin solid line is the fitting formula proposed by Güttler et al.
(2009). Our results consistently connect to the previous simulations in
the high density region.

by cluster-cluster aggregation. A large void exists between the
two smaller clusters and they are connected with one connection
of monomers in contact, represented by dashed line in the right
panel of Figure 14. The compression of the BCCA cluster oc-
curs by crashing the large void, which requires only rolling of
the monomers at the connection.

Now, let us estimate the compression strength. In static com-
pression, the aggregate is compressed by external pressure. Each
BCCA cluster feels a similar pressure, P. Using the pressure, the
force on the BCCA cluster is approximately given by

F ⇠ P · r2
BCCA. (30)

Since the crashing of the large void is accompanied by rolling of
a pair of monomers in contact, the work required for the crash-
ing is given by so-called the rolling energy of monomers, Eroll
(Dominik & Tielens (1997) or see Equation (1) for its defini-
tion). Therefore, the required force to compress the aggregate
satisfies,

F · rBCCA ⇠ Eroll. (31)

Substituting Equation (30), we further obtain the required pres-
sure to compress the aggregate as

P ⇠ Eroll

r

3
BCCA

. (32)

The radius of the BCCA clusters can be written by using the
physical values of the whole aggregate. The internal density of
the BCCA cluster is dependent on its radius. The BCCA cluster
has the fractal dimension of 2, and its radius is approximately
given by rBCCA = N

1/2
r0, where N is the number of constituent

monomers in the BCCA subcluster. The internal density of the
BCCA cluster is evaluated as

⇢ ⇠ Nm0

r

3
BCCA

⇠
 

rBCCA

r0

!�1

⇢0. (33)

Using equations (32) and (33), we finally obtain the required
pressure (or the compression strength) as

P ⇠ Eroll

r

3
0

 
⇢

⇢0

!3

. (34)

This is the same as Equation (25) obtained from our numerical
simulations.

5. Summary

We investigate the static compression strength of highly porous
dust aggregates, whose filling factor � is lower than 0.1. We
perform numerical N-body simulations of static compression of
highly porous dust aggregates. The initial dust aggregate is as-
sumed to be a BCCA cluster. The particle-particle interaction
model is based on Dominik & Tielens (1997) and Wada et al.
(2007). We introduce a new method for compression. We adopt
the periodic boundary condition in order to compress the dust ag-
gregate uniformly and naturally. Because of the periodic bound-
ary condition, the dust aggregate in computational region rep-
resents a part of a large aggregate, and thus we can investigate
the compression of a large aggregate. The periodic boundaries
move toward the center and the distance between the boundaries
becomes small. To measure the pressure of the aggregate, we
adopt a similar manner used in molecular dynamics simulations.
As a result of the numerical simulations, our main findings are
as follows.

– The compression strength can be written as

P =
Eroll

r

3
0
�3, (35)

where Eroll is the rolling energy of monomer particles, r0 is
the monomer radius, and � is the filling factor. We define
the filling factor as � = ⇢/⇢0, where ⇢ is the mass density
of the whole aggregate, and ⇢0 is the material mass density.
Equation (35) is independent of the numerical parameters;
the number of particles, the size of the initial BCCA cluster,
the boundary speed, the normal damping force. We confirm
that Equation (35) is applicable in di↵erent Eroll and r0. We
also analytically confirm Equation (35).

– Equation (35) is valid where � . 0.1 in the high density
region. In the low density region, we confirm that Equation
(35) is valid for � & 10�3 in the case of N = 16384. From the
results of di↵erent initial sizes of the aggregates, Equation
(35) is valid in the lower density region in the case of the
larger aggregates.

– The initial BCCA cluster has a fractal dimension of 2 in
the radius of the cluster, although the whole aggregate has
a fractal dimension of 3 because of the periodic boundary.
As compression proceeds, the fractal dimension inside the
radius of the initial BCCA cluster becomes 3, while the frac-
tal dimension in smaller scale keeps being 2. This means
that the initial set up, which is that fractal dimension in large
scale is 3 and that in small scale is 2, well reproduce the
structure of a dust aggregate in static compression as a con-
sequence. This also supports the fact that the compression
strength is determined by BCCA structures in a small scale.

– The static compression in the high density region (� & 0.1)
has been investigated in silicate case in previous studies
(Seizinger et al. 2012). We perform the numerical simula-
tions in silicate case and confirm that our results are consis-
tent with that of previous studies in the high density region.

Article number, page 11 of 12

結果：
・圧縮強度を定式化

Ref) Kataoka et al. 2013a, A&A, 554, A4

Ref) Kataoka et al. 2013b, A&A, 557, L4

結果：
・ダストから微惑星までの内部密度進化を解明
・中心星落下問題/衝突破壊問題/跳ね返り問題を回避(氷の場合)
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Physical Model

Particle-Particle Interaction

(a) Repulsion/Adhesion (Johnson
et al., 1971)

(b) Rolling
(Dominik & Tielens, 1995)

(c) Sliding
(Dominik & Tielens, 1996)

(d) Twisting
(Dominik & Tielens, 1996)

Forces and torques can be derived from corresponding potentials

(Wada et al., 2007)

Interaction model has been calibrated using compression experiments
(Seizinger et al., 2012)

モノマー同士の付着相互作用モデル

cf).Dominik & Tielens 1997, Wada et al. 2007

ダストアグリゲイトの圧縮強度

モノマー

例：r0=0.1μm, 氷

アグリゲイト

→N体計算を用いて、
アグリゲイトの圧縮強度を求める

モノマー同士の相互作用はよくわかっている
↔その集合体の振る舞いはわかっていない
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の粒子
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計算方法

t=0 (φ=0.0003) t=1×106t0 (φ=0.002) t=2×106t0 (φ=0.01)
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圧縮方法：境界そのものを動かすことで圧縮

各時刻での充填率φと圧力Pを測る
→P=P(φ)を求める

� = �/�0cf)
: 内部密度
: 物質密度(=1 g/cc)

�
�0

時刻
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結果: 粒子数依存性

Akimasa Kataoka et al.: Static compression of porous dust aggregates
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Fig. 5. Dependency on the strain rate parameter Cv. Each line shows
the average of ten runs of the fixed strain rate: Cv = 1⇥10�7, 3⇥10�7, 1⇥
10�6, 3 ⇥ 10�6, 1 ⇥ 10�5. The other parameters are the same for every
ten runs : N = 16384, k

n

= 0.01, and ⇠crit = 8 Å. The dashed line is
Equation (25).

3.3. Dependence on the size of the initial BCCA cluster

To confirm that Equation (25) is valid in the lower density re-
gion, we perform the simulations with the di↵erent number of
particles, which is equivalent to the di↵erent sizes of the ini-
tial dust aggregates. Figure 6 shows dependence on the num-
ber of particles of the initial BCCA cluster. The initial numbers
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Fig. 6. Dependency on the number of particles N. Each line shows the
average of ten runs of the fixed number of particles: N = 1024, 4096,
and 16384. The other parameters are Cv = 3 ⇥ 10�7, kn = 0.01, and
⇠crit = 8 Å in the case of N = 1024, 4096, and Cv = 1 ⇥ 10�7, kn = 0.01,
and ⇠crit = 8 Å in the case of N = 16384. The dashed line is Equation
(25).

of particles are 1024, 4096, and 16384. The other parameters

are Cv = 3 ⇥ 10�7, kn = 0.01, and ⇠crit = 8 Å in the case of
N = 1024 and N = 4096, and Cv = 1 ⇥ 10�7, kn = 0.01, and
⇠crit = 8 Å in the case of N = 16384. We chose lower Cv in
the case of N = 16384 in order to investigate to the strength in
lower � region. Each line represents the average of ten runs for
each simulation as in Figures 4(b) and 5. We draw the averaged
line from the lower � than that in Figure 5. In such a low �
region, we consider for some runs that the pressure is zero be-
cause the aggregate is isolated from the copies of the aggregate
over the periodic boundaries. Except for the initial deviation in
low �, all lines have a good agreement with Equation (25) where
� . 0.1. The result has the good agreement in lower � for runs
with larger N. Therefore, we conclude that the formula Equation
(25) is valid for � . 0.1.

3.4. Dependence on the normal damping force

As described in Section 2.2, we adopt the normal damping force
to reduce the normal oscillations in addition to Wada et al.
(2007). To confirm that this damping factor does not a↵ect the
simulation results, we set the damping factor kn as a parameter.
Figure 7 shows dependence of pressure on the normal damping
factor kn. The fixed parameters are N = 16384 Cv = 3 ⇥ 10�7,
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Fig. 7. Dependence on the normal damping force. We put the same
ten initial conditions varying the normal damping force with kn = 0,
kn = 10�2, and kn = 101. Each line shows the result of one run. The
other parameters are N = 16384, Cv = 3 ⇥ 10�7, and ⇠crit = 8 Å.

and ⇠crit = 8 Å. Each line represents the result of one run for
kn = 0, 10�2, and 101, respectively. This figure clearly shows
that the normal damping force does not a↵ect the simulation re-
sults.

As mentioned in Section 3.1, the compression strength in the
low density region (� . 0.1) is expected to be determined by
the rolling motion. In order to confirm this, we calculate the
total energy dissipations of all motions, which are normal damp-
ing, rolling, sliding and twisting. Figure 8 shows the dissipated
energy for each mechanism. The solid lines represent the dissi-
pated energies in the case without the normal damping and the
dashed lines represent those in the case of kn = 0.01. The dis-
sipated energy in the case of kn = 10 is indistinguishable from
those in the case of kn = 0.01, and thus we do not plot them.
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Fig. 13. Same as Figure 12, but plotted with linear scale of � and
reversal of xy axis to compare with previous studies (see Figure 4 in
Seizinger et al. (2012)). The dotted line is the result of numerical sim-
ulations in the high density region (� & 0.1) in Seizinger et al. (2012)
and the thin solid line is the fitting formula proposed by Güttler et al.
(2009). Our results consistently connect to the previous simulations in
the high density region.

by cluster-cluster aggregation. A large void exists between the
two smaller clusters and they are connected with one connection
of monomers in contact, represented by dashed line in the right
panel of Figure 14. The compression of the BCCA cluster oc-
curs by crashing the large void, which requires only rolling of
the monomers at the connection.

Now, let us estimate the compression strength. In static com-
pression, the aggregate is compressed by external pressure. Each
BCCA cluster feels a similar pressure, P. Using the pressure, the
force on the BCCA cluster is approximately given by

F ⇠ P · r2
BCCA. (30)

Since the crashing of the large void is accompanied by rolling of
a pair of monomers in contact, the work required for the crash-
ing is given by so-called the rolling energy of monomers, Eroll
(Dominik & Tielens (1997) or see Equation (1) for its defini-
tion). Therefore, the required force to compress the aggregate
satisfies,

F · rBCCA ⇠ Eroll. (31)

Substituting Equation (30), we further obtain the required pres-
sure to compress the aggregate as

P ⇠ Eroll

r

3
BCCA

. (32)

The radius of the BCCA clusters can be written by using the
physical values of the whole aggregate. The internal density of
the BCCA cluster is dependent on its radius. The BCCA cluster
has the fractal dimension of 2, and its radius is approximately
given by rBCCA = N

1/2
r0, where N is the number of constituent

monomers in the BCCA subcluster. The internal density of the
BCCA cluster is evaluated as

⇢ ⇠ Nm0

r

3
BCCA

⇠
 

rBCCA

r0

!�1

⇢0. (33)

Using equations (32) and (33), we finally obtain the required
pressure (or the compression strength) as

P ⇠ Eroll

r

3
0

 
⇢

⇢0

!3

. (34)

This is the same as Equation (25) obtained from our numerical
simulations.

5. Summary

We investigate the static compression strength of highly porous
dust aggregates, whose filling factor � is lower than 0.1. We
perform numerical N-body simulations of static compression of
highly porous dust aggregates. The initial dust aggregate is as-
sumed to be a BCCA cluster. The particle-particle interaction
model is based on Dominik & Tielens (1997) and Wada et al.
(2007). We introduce a new method for compression. We adopt
the periodic boundary condition in order to compress the dust ag-
gregate uniformly and naturally. Because of the periodic bound-
ary condition, the dust aggregate in computational region rep-
resents a part of a large aggregate, and thus we can investigate
the compression of a large aggregate. The periodic boundaries
move toward the center and the distance between the boundaries
becomes small. To measure the pressure of the aggregate, we
adopt a similar manner used in molecular dynamics simulations.
As a result of the numerical simulations, our main findings are
as follows.

– The compression strength can be written as

P =
Eroll

r

3
0
�3, (35)

where Eroll is the rolling energy of monomer particles, r0 is
the monomer radius, and � is the filling factor. We define
the filling factor as � = ⇢/⇢0, where ⇢ is the mass density
of the whole aggregate, and ⇢0 is the material mass density.
Equation (35) is independent of the numerical parameters;
the number of particles, the size of the initial BCCA cluster,
the boundary speed, the normal damping force. We confirm
that Equation (35) is applicable in di↵erent Eroll and r0. We
also analytically confirm Equation (35).

– Equation (35) is valid where � . 0.1 in the high density
region. In the low density region, we confirm that Equation
(35) is valid for � & 10�3 in the case of N = 16384. From the
results of di↵erent initial sizes of the aggregates, Equation
(35) is valid in the lower density region in the case of the
larger aggregates.

– The initial BCCA cluster has a fractal dimension of 2 in
the radius of the cluster, although the whole aggregate has
a fractal dimension of 3 because of the periodic boundary.
As compression proceeds, the fractal dimension inside the
radius of the initial BCCA cluster becomes 3, while the frac-
tal dimension in smaller scale keeps being 2. This means
that the initial set up, which is that fractal dimension in large
scale is 3 and that in small scale is 2, well reproduce the
structure of a dust aggregate in static compression as a con-
sequence. This also supports the fact that the compression
strength is determined by BCCA structures in a small scale.

– The static compression in the high density region (� & 0.1)
has been investigated in silicate case in previous studies
(Seizinger et al. 2012). We perform the numerical simula-
tions in silicate case and confirm that our results are consis-
tent with that of previous studies in the high density region.

Article number, page 11 of 12

粒子数↑

低密度まで
計算

数値計算により高空隙ダストの静的圧縮強度を初めて定式化

時刻
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結果: 圧縮強度

Akimasa Kataoka et al.: Static compression of porous dust aggregates
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Fig. 13. Same as Figure 12, but plotted with linear scale of � and
reversal of xy axis to compare with previous studies (see Figure 4 in
Seizinger et al. (2012)). The dotted line is the result of numerical sim-
ulations in the high density region (� & 0.1) in Seizinger et al. (2012)
and the thin solid line is the fitting formula proposed by Güttler et al.
(2009). Our results consistently connect to the previous simulations in
the high density region.

by cluster-cluster aggregation. A large void exists between the
two smaller clusters and they are connected with one connection
of monomers in contact, represented by dashed line in the right
panel of Figure 14. The compression of the BCCA cluster oc-
curs by crashing the large void, which requires only rolling of
the monomers at the connection.

Now, let us estimate the compression strength. In static com-
pression, the aggregate is compressed by external pressure. Each
BCCA cluster feels a similar pressure, P. Using the pressure, the
force on the BCCA cluster is approximately given by

F ⇠ P · r2
BCCA. (30)

Since the crashing of the large void is accompanied by rolling of
a pair of monomers in contact, the work required for the crash-
ing is given by so-called the rolling energy of monomers, Eroll
(Dominik & Tielens (1997) or see Equation (1) for its defini-
tion). Therefore, the required force to compress the aggregate
satisfies,

F · rBCCA ⇠ Eroll. (31)

Substituting Equation (30), we further obtain the required pres-
sure to compress the aggregate as

P ⇠ Eroll

r

3
BCCA

. (32)

The radius of the BCCA clusters can be written by using the
physical values of the whole aggregate. The internal density of
the BCCA cluster is dependent on its radius. The BCCA cluster
has the fractal dimension of 2, and its radius is approximately
given by rBCCA = N

1/2
r0, where N is the number of constituent

monomers in the BCCA subcluster. The internal density of the
BCCA cluster is evaluated as

⇢ ⇠ Nm0

r

3
BCCA

⇠
 

rBCCA

r0

!�1

⇢0. (33)

Using equations (32) and (33), we finally obtain the required
pressure (or the compression strength) as

P ⇠ Eroll

r

3
0

 
⇢

⇢0

!3

. (34)

This is the same as Equation (25) obtained from our numerical
simulations.

5. Summary

We investigate the static compression strength of highly porous
dust aggregates, whose filling factor � is lower than 0.1. We
perform numerical N-body simulations of static compression of
highly porous dust aggregates. The initial dust aggregate is as-
sumed to be a BCCA cluster. The particle-particle interaction
model is based on Dominik & Tielens (1997) and Wada et al.
(2007). We introduce a new method for compression. We adopt
the periodic boundary condition in order to compress the dust ag-
gregate uniformly and naturally. Because of the periodic bound-
ary condition, the dust aggregate in computational region rep-
resents a part of a large aggregate, and thus we can investigate
the compression of a large aggregate. The periodic boundaries
move toward the center and the distance between the boundaries
becomes small. To measure the pressure of the aggregate, we
adopt a similar manner used in molecular dynamics simulations.
As a result of the numerical simulations, our main findings are
as follows.

– The compression strength can be written as

P =
Eroll

r

3
0
�3, (35)

where Eroll is the rolling energy of monomer particles, r0 is
the monomer radius, and � is the filling factor. We define
the filling factor as � = ⇢/⇢0, where ⇢ is the mass density
of the whole aggregate, and ⇢0 is the material mass density.
Equation (35) is independent of the numerical parameters;
the number of particles, the size of the initial BCCA cluster,
the boundary speed, the normal damping force. We confirm
that Equation (35) is applicable in di↵erent Eroll and r0. We
also analytically confirm Equation (35).

– Equation (35) is valid where � . 0.1 in the high density
region. In the low density region, we confirm that Equation
(35) is valid for � & 10�3 in the case of N = 16384. From the
results of di↵erent initial sizes of the aggregates, Equation
(35) is valid in the lower density region in the case of the
larger aggregates.

– The initial BCCA cluster has a fractal dimension of 2 in
the radius of the cluster, although the whole aggregate has
a fractal dimension of 3 because of the periodic boundary.
As compression proceeds, the fractal dimension inside the
radius of the initial BCCA cluster becomes 3, while the frac-
tal dimension in smaller scale keeps being 2. This means
that the initial set up, which is that fractal dimension in large
scale is 3 and that in small scale is 2, well reproduce the
structure of a dust aggregate in static compression as a con-
sequence. This also supports the fact that the compression
strength is determined by BCCA structures in a small scale.

– The static compression in the high density region (� & 0.1)
has been investigated in silicate case in previous studies
(Seizinger et al. 2012). We perform the numerical simula-
tions in silicate case and confirm that our results are consis-
tent with that of previous studies in the high density region.
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1.ガス圧による圧縮

原始惑星系円盤で想定される圧力

P � Fdrag

�a2

(圧力) ＝
(ガス抵抗力)

(断面積)

ダストとガスの相対速度
(熱運動、radial drift、乱流など)

→ダストはガスからの抵抗力
を受ける

ガス圧と圧縮強度がつりあう
密度を求める

・ガス圧

・ダスト圧縮強度

Akimasa Kataoka et al.: Static compression of porous dust aggregates
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Fig. 13. Same as Figure 12, but plotted with linear scale of � and
reversal of xy axis to compare with previous studies (see Figure 4 in
Seizinger et al. (2012)). The dotted line is the result of numerical sim-
ulations in the high density region (� & 0.1) in Seizinger et al. (2012)
and the thin solid line is the fitting formula proposed by Güttler et al.
(2009). Our results consistently connect to the previous simulations in
the high density region.

by cluster-cluster aggregation. A large void exists between the
two smaller clusters and they are connected with one connection
of monomers in contact, represented by dashed line in the right
panel of Figure 14. The compression of the BCCA cluster oc-
curs by crashing the large void, which requires only rolling of
the monomers at the connection.

Now, let us estimate the compression strength. In static com-
pression, the aggregate is compressed by external pressure. Each
BCCA cluster feels a similar pressure, P. Using the pressure, the
force on the BCCA cluster is approximately given by

F ⇠ P · r2
BCCA. (30)

Since the crashing of the large void is accompanied by rolling of
a pair of monomers in contact, the work required for the crash-
ing is given by so-called the rolling energy of monomers, Eroll
(Dominik & Tielens (1997) or see Equation (1) for its defini-
tion). Therefore, the required force to compress the aggregate
satisfies,

F · rBCCA ⇠ Eroll. (31)

Substituting Equation (30), we further obtain the required pres-
sure to compress the aggregate as

P ⇠ Eroll

r

3
BCCA

. (32)

The radius of the BCCA clusters can be written by using the
physical values of the whole aggregate. The internal density of
the BCCA cluster is dependent on its radius. The BCCA cluster
has the fractal dimension of 2, and its radius is approximately
given by rBCCA = N

1/2
r0, where N is the number of constituent

monomers in the BCCA subcluster. The internal density of the
BCCA cluster is evaluated as

⇢ ⇠ Nm0

r

3
BCCA

⇠
 

rBCCA

r0

!�1

⇢0. (33)

Using equations (32) and (33), we finally obtain the required
pressure (or the compression strength) as

P ⇠ Eroll

r

3
0

 
⇢

⇢0

!3

. (34)

This is the same as Equation (25) obtained from our numerical
simulations.

5. Summary

We investigate the static compression strength of highly porous
dust aggregates, whose filling factor � is lower than 0.1. We
perform numerical N-body simulations of static compression of
highly porous dust aggregates. The initial dust aggregate is as-
sumed to be a BCCA cluster. The particle-particle interaction
model is based on Dominik & Tielens (1997) and Wada et al.
(2007). We introduce a new method for compression. We adopt
the periodic boundary condition in order to compress the dust ag-
gregate uniformly and naturally. Because of the periodic bound-
ary condition, the dust aggregate in computational region rep-
resents a part of a large aggregate, and thus we can investigate
the compression of a large aggregate. The periodic boundaries
move toward the center and the distance between the boundaries
becomes small. To measure the pressure of the aggregate, we
adopt a similar manner used in molecular dynamics simulations.
As a result of the numerical simulations, our main findings are
as follows.

– The compression strength can be written as

P =
Eroll

r

3
0
�3, (35)

where Eroll is the rolling energy of monomer particles, r0 is
the monomer radius, and � is the filling factor. We define
the filling factor as � = ⇢/⇢0, where ⇢ is the mass density
of the whole aggregate, and ⇢0 is the material mass density.
Equation (35) is independent of the numerical parameters;
the number of particles, the size of the initial BCCA cluster,
the boundary speed, the normal damping force. We confirm
that Equation (35) is applicable in di↵erent Eroll and r0. We
also analytically confirm Equation (35).

– Equation (35) is valid where � . 0.1 in the high density
region. In the low density region, we confirm that Equation
(35) is valid for � & 10�3 in the case of N = 16384. From the
results of di↵erent initial sizes of the aggregates, Equation
(35) is valid in the lower density region in the case of the
larger aggregates.

– The initial BCCA cluster has a fractal dimension of 2 in
the radius of the cluster, although the whole aggregate has
a fractal dimension of 3 because of the periodic boundary.
As compression proceeds, the fractal dimension inside the
radius of the initial BCCA cluster becomes 3, while the frac-
tal dimension in smaller scale keeps being 2. This means
that the initial set up, which is that fractal dimension in large
scale is 3 and that in small scale is 2, well reproduce the
structure of a dust aggregate in static compression as a con-
sequence. This also supports the fact that the compression
strength is determined by BCCA structures in a small scale.

– The static compression in the high density region (� & 0.1)
has been investigated in silicate case in previous studies
(Seizinger et al. 2012). We perform the numerical simula-
tions in silicate case and confirm that our results are consis-
tent with that of previous studies in the high density region.
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原始惑星系円盤で想定される圧力

(圧力) ＝
(自己重力)
(断面積)

ダストが重くなると自身の
重力で構造が潰れる 自己重力と圧縮強度がつりあう

密度を求める

・自己重力

・ダスト圧縮強度

Akimasa Kataoka et al.: Static compression of porous dust aggregates
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Fig. 13. Same as Figure 12, but plotted with linear scale of � and
reversal of xy axis to compare with previous studies (see Figure 4 in
Seizinger et al. (2012)). The dotted line is the result of numerical sim-
ulations in the high density region (� & 0.1) in Seizinger et al. (2012)
and the thin solid line is the fitting formula proposed by Güttler et al.
(2009). Our results consistently connect to the previous simulations in
the high density region.

by cluster-cluster aggregation. A large void exists between the
two smaller clusters and they are connected with one connection
of monomers in contact, represented by dashed line in the right
panel of Figure 14. The compression of the BCCA cluster oc-
curs by crashing the large void, which requires only rolling of
the monomers at the connection.

Now, let us estimate the compression strength. In static com-
pression, the aggregate is compressed by external pressure. Each
BCCA cluster feels a similar pressure, P. Using the pressure, the
force on the BCCA cluster is approximately given by

F ⇠ P · r2
BCCA. (30)

Since the crashing of the large void is accompanied by rolling of
a pair of monomers in contact, the work required for the crash-
ing is given by so-called the rolling energy of monomers, Eroll
(Dominik & Tielens (1997) or see Equation (1) for its defini-
tion). Therefore, the required force to compress the aggregate
satisfies,

F · rBCCA ⇠ Eroll. (31)

Substituting Equation (30), we further obtain the required pres-
sure to compress the aggregate as

P ⇠ Eroll

r

3
BCCA

. (32)

The radius of the BCCA clusters can be written by using the
physical values of the whole aggregate. The internal density of
the BCCA cluster is dependent on its radius. The BCCA cluster
has the fractal dimension of 2, and its radius is approximately
given by rBCCA = N

1/2
r0, where N is the number of constituent

monomers in the BCCA subcluster. The internal density of the
BCCA cluster is evaluated as

⇢ ⇠ Nm0

r

3
BCCA

⇠
 

rBCCA

r0

!�1

⇢0. (33)

Using equations (32) and (33), we finally obtain the required
pressure (or the compression strength) as

P ⇠ Eroll

r

3
0

 
⇢

⇢0

!3

. (34)

This is the same as Equation (25) obtained from our numerical
simulations.

5. Summary

We investigate the static compression strength of highly porous
dust aggregates, whose filling factor � is lower than 0.1. We
perform numerical N-body simulations of static compression of
highly porous dust aggregates. The initial dust aggregate is as-
sumed to be a BCCA cluster. The particle-particle interaction
model is based on Dominik & Tielens (1997) and Wada et al.
(2007). We introduce a new method for compression. We adopt
the periodic boundary condition in order to compress the dust ag-
gregate uniformly and naturally. Because of the periodic bound-
ary condition, the dust aggregate in computational region rep-
resents a part of a large aggregate, and thus we can investigate
the compression of a large aggregate. The periodic boundaries
move toward the center and the distance between the boundaries
becomes small. To measure the pressure of the aggregate, we
adopt a similar manner used in molecular dynamics simulations.
As a result of the numerical simulations, our main findings are
as follows.

– The compression strength can be written as

P =
Eroll

r

3
0
�3, (35)

where Eroll is the rolling energy of monomer particles, r0 is
the monomer radius, and � is the filling factor. We define
the filling factor as � = ⇢/⇢0, where ⇢ is the mass density
of the whole aggregate, and ⇢0 is the material mass density.
Equation (35) is independent of the numerical parameters;
the number of particles, the size of the initial BCCA cluster,
the boundary speed, the normal damping force. We confirm
that Equation (35) is applicable in di↵erent Eroll and r0. We
also analytically confirm Equation (35).

– Equation (35) is valid where � . 0.1 in the high density
region. In the low density region, we confirm that Equation
(35) is valid for � & 10�3 in the case of N = 16384. From the
results of di↵erent initial sizes of the aggregates, Equation
(35) is valid in the lower density region in the case of the
larger aggregates.

– The initial BCCA cluster has a fractal dimension of 2 in
the radius of the cluster, although the whole aggregate has
a fractal dimension of 3 because of the periodic boundary.
As compression proceeds, the fractal dimension inside the
radius of the initial BCCA cluster becomes 3, while the frac-
tal dimension in smaller scale keeps being 2. This means
that the initial set up, which is that fractal dimension in large
scale is 3 and that in small scale is 2, well reproduce the
structure of a dust aggregate in static compression as a con-
sequence. This also supports the fact that the compression
strength is determined by BCCA structures in a small scale.

– The static compression in the high density region (� & 0.1)
has been investigated in silicate case in previous studies
(Seizinger et al. 2012). We perform the numerical simula-
tions in silicate case and confirm that our results are consis-
tent with that of previous studies in the high density region.
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2.自己重力による圧縮
P � Fgrav

�a2

A&A 557, L4 (2013)

(a) Hit-and-stick

(b) Collisional compression

(c) Gas compression

(d) Self-gravitational compression

gas flow

gravitational force

Fig. 1. Schematic drawing to illustrate dust growth via fluffy aggregates.
a) The dust aggregate hits another aggregate to be stick. This reduces
dust density and occurs in a very early stage of dust growth. b) When the
collisional speed is high enough to disrupt the dust aggregates, they are
compressed. c) Dust aggregates have a velocity difference against gas,
and they feel the ram pressure by the gas. The ram pressure statically
compresses the dust aggregates. d) When the dust aggregates become
so massive that they do not support their structure, they are compressed
by their own self-gravity.

2. Method

The compressive strength of a highly porous dust aggregate, P,
is given by (Kataoka et al. 2013)

P =
Eroll

r3
0

(
ρ

ρ0

)3

, (1)

where ρ is the mean internal density of the dust aggregate, r0
the monomer radius, ρ0 the material density, and Eroll the rolling
energy, which is the energy for rolling a particle over a quar-
ter of the circumference of another particle (Dominik & Tielens
1997; Wada et al. 2007). In this paper, we adopt ρ0 = 1.0 g/cm3,
r0 = 0.1 µm, and Eroll = 4.74×10−9 erg, which correspond to icy
particles. Eroll is proportional to the critical displacement, which
has an uncertainty from 2 Å to 30 Å (Dominik & Tielens 1997;
Heim et al. 1999). For later discussion, we note that the dust den-
sity is proportional to E1/3

roll and thus the uncertainty little affects
the resulting dust density.

When a dust aggregate feels a pressure that is higher than
its compressive strength, the aggregate is quasi-statically com-
pressed until its strength equals the pressure. We define the dust
internal density where the compressive strength equals a given

pressure as an equilibrium density ρeq. Using Eq. (1), we
obtain ρeq as

ρeq =




r3
0

Eroll
P




1/3

ρ0. (2)

We consider a source of the pressure to be ram pressure of the
disk gas or self-gravity of the aggregate.

We obtain ram pressure of the disk gas as follows. We con-
sider a dust aggregate of mass m and radius r, which is moving
in the disk gas with velocity v against the gas. The pressure Pgas
against the aggregate can be defined as the gas drag force di-
vided by the geometrical cross section: Pgas ≡ Fdrag/A, where
Fdrag = mv/ts, A = πr2, and ts is the stopping time of the aggre-
gate. While the pressure has both compressive and tensile com-
ponents, we assume that the pressure is compressive. Thus, we
obtain the pressure as

Pgas =
mv
πr2

1
ts
· (3)

The typical gas drag law is adopted to obtain ts and v. The gas
drag law is the Epstein regime, when the dust radius is less than
4/9 times the mean free path of gas. On the other hand, it is
the Stokes regime if the Reynolds number is less than unity (see
Eq. (4) in Okuzumi et al. 2012, for example). When the Reynolds
number exceeds unity, the gas drag law changes as a function
of Reynolds number (see Eqs. (8a) to (8c) in Weidenschilling
1977). The drag force is determined by the relative velocity of
the gas and dust. The relative velocity is induced by Brownian
motion, radial drift, azimuthal drift, and turbulence. We use the
closed formula of the turbulence model (Ormel & Cuzzi 2007)
and assume the turbulent parameter αD = 10−3, except for the
strong turbulence case, where αD = 10−2.

We assume the minimum mass solar nebula (MMSN), which
was constructed based on our solar system (Hayashi 1981).
At a radial distance R from the central star, the gas-surface
density profile is 1700 g/cm2 × (R/1 AU)−1.5 and the dust-
to-gas mass ratio is 0.01. The temperature profile adopted is
137 K × (R/1 AU)−3/7, which corresponds to midplane temper-
ature (Chiang et al. 2001). This is cooler than optically thin disk
models to focus on the dust coagulation in the midplane.

We also calculate the self-gravitational pressure as follows.
Although the gravitational pressure has distribution in the ag-
gregates, we simply assume a uniform pressure inside the aggre-
gates. We define the force on the dust aggregates as F = Gm2/r2,
and the area A = πr2. Thus, the self-gravitational pressure is

Pgrav =
Gm2

πr4 · (4)

We note that the equilibrium density of self-gravitational com-
pression depends only on dust mass and internal density and not
on the disk properties.

3. Results

First, we calculate the equilibrium density of dust aggregates in a
wide range in mass, where their compressive strength is equal to
the gas or self-gravitational pressure. Figure 2 shows the equi-
librium dust density against dust mass at 5 AU in the disk. If
the gas or self-gravitational pressure is higher than the compres-
sive strength, the dust aggregate is compressed to achieve the
equilibrium density because the strength is higher in denser dust

L4, page 2 of 4
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原始惑星系円盤で想定される圧力
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原始惑星系円盤で想定される圧力
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原始惑星系円盤で想定される圧力
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• N体計算を用いてダストの静的圧縮過程を調べた

• 周期境界条件を採用し自然で一様な圧縮を再現
• ダストの静的圧縮強度を導出

Kataoka et al. 2013a, A&A, 554, A4 

• 求めた圧縮強度を原始惑星系円盤における静的圧縮に応用
• 空隙を考慮した微惑星形成過程を解明
• 中心星落下問題/衝突破壊問題/跳ね返り問題を回避 (氷の

場合)

Kataoka et al. 2013b, A&A, 557, L4 
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今後について
open question
• 氷微惑星は形成できたが、岩石微惑星の形成は困難
• → ガス構造?自己重力不安定?（瀧さん・石津さんのトーク）

• →有機物マントルで直接合体成長？（上田さんのポスター）

今後1: 観測

→ミリ波放射の起源は1mmダストではなく10mのアグリゲイト？

今後2: 微惑星の分布

→円盤内での微惑星の分布を出して、惑星形成を議論


