Planet のバックアップ(No.76)
- バックアップ一覧
- 差分 を表示
- 現在との差分 を表示
- ソース を表示
- Planet へ行く。
- 1 (2019-04-05 (金) 17:29:32)
- 2 (2019-04-08 (月) 14:13:18)
- 3 (2019-04-11 (木) 17:08:03)
- 4 (2019-04-15 (月) 14:10:14)
- 5 (2019-04-16 (火) 07:42:04)
- 6 (2019-04-18 (木) 13:41:15)
- 7 (2019-04-22 (月) 09:45:27)
- 8 (2019-04-22 (月) 18:31:00)
- 9 (2019-04-23 (火) 16:04:27)
- 10 (2019-04-24 (水) 15:59:22)
- 11 (2019-05-06 (月) 15:55:55)
- 12 (2019-05-07 (火) 17:29:15)
- 13 (2019-05-15 (水) 09:40:23)
- 14 (2019-05-28 (火) 18:16:39)
- 15 (2019-05-29 (水) 07:40:33)
- 16 (2019-06-03 (月) 15:39:11)
- 17 (2019-06-04 (火) 18:44:30)
- 18 (2019-06-05 (水) 18:12:02)
- 19 (2019-06-09 (日) 01:12:05)
- 20 (2019-06-14 (金) 08:07:42)
- 21 (2019-06-19 (水) 16:28:35)
- 22 (2019-06-24 (月) 17:29:45)
- 23 (2019-06-27 (木) 14:11:16)
- 24 (2019-07-11 (木) 20:15:27)
- 25 (2019-07-12 (金) 13:57:23)
- 26 (2019-10-02 (水) 18:10:34)
- 27 (2019-10-03 (木) 15:36:12)
- 28 (2019-10-10 (木) 11:24:09)
- 29 (2019-11-01 (金) 11:38:21)
- 30 (2019-11-04 (月) 11:10:11)
- 31 (2019-12-18 (水) 13:38:58)
- 32 (2019-12-23 (月) 17:49:40)
- 33 (2019-12-30 (月) 15:31:57)
- 34 (2020-01-07 (火) 16:10:11)
- 35 (2020-01-08 (水) 04:08:01)
- 36 (2020-01-08 (水) 11:53:12)
- 37 (2020-01-16 (木) 15:18:17)
- 38 (2020-01-20 (月) 12:49:01)
- 39 (2020-01-22 (水) 18:53:35)
- 40 (2020-01-27 (月) 15:12:45)
- 41 (2020-03-03 (火) 21:50:30)
- 42 (2020-04-02 (木) 16:39:00)
- 43 (2020-04-08 (水) 18:38:23)
- 44 (2020-04-09 (木) 11:24:13)
- 45 (2020-04-16 (木) 16:10:46)
- 46 (2020-04-20 (月) 11:53:51)
- 47 (2020-04-28 (火) 20:28:33)
- 48 (2020-04-29 (水) 15:52:19)
- 49 (2020-05-07 (木) 12:29:44)
- 50 (2020-05-08 (金) 14:15:50)
- 51 (2020-05-08 (金) 22:43:49)
- 52 (2020-05-14 (木) 22:30:07)
- 53 (2020-06-26 (金) 17:31:55)
- 54 (2020-07-03 (金) 15:00:34)
- 55 (2020-07-19 (日) 12:04:08)
- 56 (2020-10-05 (月) 18:52:22)
- 57 (2020-10-05 (月) 22:30:37)
- 58 (2020-10-08 (木) 16:31:06)
- 59 (2020-10-15 (木) 10:15:06)
- 60 (2020-11-06 (金) 10:10:50)
- 61 (2020-11-20 (金) 22:58:33)
- 62 (2020-11-30 (月) 17:26:33)
- 63 (2020-12-16 (水) 21:44:01)
- 64 (2020-12-21 (月) 23:22:46)
- 65 (2021-01-08 (金) 13:15:27)
- 66 (2021-01-21 (木) 20:25:06)
- 67 (2021-01-29 (金) 13:27:49)
- 68 (2021-02-21 (日) 12:23:25)
- 69 (2021-02-22 (月) 13:24:52)
- 70 (2021-04-09 (金) 17:04:50)
- 71 (2021-04-16 (金) 11:29:47)
- 72 (2021-05-07 (金) 18:22:33)
- 73 (2021-05-15 (土) 00:33:47)
- 74 (2021-05-17 (月) 16:18:23)
- 75 (2021-05-30 (日) 22:12:00)
- 76 (2021-06-13 (日) 13:47:04)
- 77 (2021-07-07 (水) 18:36:13)
- 78 (2021-07-09 (金) 11:38:22)
- 79 (2021-09-21 (火) 15:41:48)
- 80 (2021-10-01 (金) 14:57:41)
- 81 (2021-10-14 (木) 14:49:25)
- 82 (2021-11-04 (木) 10:12:42)
- 83 (2021-11-08 (月) 17:56:27)
- 84 (2021-12-13 (月) 15:01:49)
- 85 (2022-01-12 (水) 20:36:26)
- 86 (2022-01-13 (木) 17:00:39)
- 87 (2022-01-27 (木) 01:36:38)
- 88 (2022-02-10 (木) 13:05:29)
- 89 (2022-04-29 (金) 00:26:41)
- 90 (2022-05-26 (木) 16:01:50)
- 91 (2022-06-03 (金) 14:22:40)
- 92 (2022-06-06 (月) 15:20:03)
- 93 (2022-06-15 (水) 18:34:48)
- 94 (2022-06-16 (木) 00:44:05)
- 95 (2022-06-20 (月) 16:51:40)
- 96 (2022-06-23 (木) 16:10:59)
- 97 (2022-07-05 (火) 11:47:42)
- 98 (2022-07-13 (水) 12:47:31)
- 99 (2022-09-12 (月) 21:36:53)
- 100 (2022-10-06 (木) 16:20:43)
- 101 (2022-10-20 (木) 12:22:49)
- 102 (2022-10-25 (火) 14:56:31)
- 103 (2022-10-27 (木) 11:47:42)
- 104 (2022-11-05 (土) 09:24:50)
- 105 (2022-11-10 (木) 12:35:05)
- 106 (2022-12-05 (月) 12:30:38)
- 107 (2022-12-23 (金) 14:02:53)
- 108 (2022-12-26 (月) 17:39:12)
- 109 (2023-01-11 (水) 14:27:22)
- 110 (2023-01-26 (木) 15:50:49)
- 111 (2023-01-31 (火) 15:52:44)
- 112 (2023-02-03 (金) 17:28:40)
- 113 (2023-03-29 (水) 12:22:41)
- 114 (2023-04-04 (火) 17:32:28)
- 115 (2023-04-07 (金) 11:04:43)
- 116 (2023-04-20 (木) 11:18:26)
- 117 (2023-04-25 (火) 15:13:19)
- 118 (2023-04-26 (水) 10:14:24)
- 119 (2023-04-27 (木) 12:59:10)
- 120 (2023-05-06 (土) 06:56:08)
惑星セミナー2021 †
惑星セミナーは原則として毎週木曜日の15:00から開催しています。(連絡係:星野 遥, 荒川 創太, 高橋 実道,古家 健次)
astro-phセミナーは毎週月曜日の12:00から開催しています。(連絡係:Carol Kwok,瀧 哲朗)
Schedule & History †
2020年度 2019年度 2018年度 2017年度 2016年度 2015年度 2014年度
日程 | 発表 | タイトル | Remarks | 担当 |
前期 第1回 4/15 15:00- | All members | Self-introduction | 古家 | |
前期 第2回 4/22 15:00- | All members | Self-introduction | 古家 | |
前期 第3回 5/13 14:00- | Teruyuki Hirano (ABC) | Near Infrared Spectroscopy as a Powerful Tool to Probe Exoplanetary Systems | 14:00 | 古家 |
前期 第4回 5/20 15:00- | Ryuki Hyodo (ISAS/JAXA) | Planetesimal formation -- Around the snow line and the "no-drift" mechanism | 荒川 | |
前期 第5回 6/17 15:00- | Riouhei Nakatani (RIKEN) | Photoevaporation of Protoplanetary Disks: Revisiting the Underlying Physics and the Gravitational Radius | 高橋 | |
前期 第6回 6/24 15:00- | Hiroaki Kaneko (titech) | Simultaneous evolution of rims around chondrules and accreting dust particles | 星野 |
- 5/20 Ryuki Hyodo (ISAS/JAXA), Planetesimal formation -- Around the snow line and the "no-drift" mechanism
- Forming planetesimals in protoplanetary disks is a major challenge in our current understanding of planet formation. Icy pebbles mixed with silicate dust formed at the outer disk drift inward due to the gas drag. We performed 1D diffusion-advection simulations that include the back-reaction (the inertia) to radial drift and diffusion of icy pebbles and silicate dust, ice sublimation, the release of silicate dust, and their recycling through the recondensation and sticking onto pebbles outside the snow line. In this talk, I will present how icy pebbles and silicate dust pile up around the snow line. I also report a new mechanism, the “no-drift” runaway pile-up, that leads to a runaway accumulation of pebbles in disks, thus favoring the formation of planetesimals by streaming and/or gravitational instabilities. References: Hyodo et al. 2021 A&A, 646, A14; Ida et al. 2021 A&A, 646, A13; Hyodo et al. 2021 A&A, 645, L9
- 6/17 Riouhei Nakatani (RIKEN), Photoevaporation of Protoplanetary Disks: Revisiting the Underlying Physics and the Gravitational Radius
- In a variety of astrophysical problems, we find a situation where a clump of gas is irradiated by ultraviolet and X-ray from radiation sources. An important outcome of this process is that excessive photon energy goes into the heat for the gas, which results in driving winds. This wind-driving process, termed photoevaporation, is essential to determine the fate of the irradiated objects. Protoplanetary disks are one of such objects. The stellar UV and X-ray can yield sufficiently high mass-loss rates that can disperse the disks within 10 Myr. The gravitational radius is often used as a criterial radius above which the photoheated gas is possible to escape from the gravitational binding of the host star. However, the gravitational radius is derived from dimensional analysis and thus does not provide a definite criterion regarding the escape capability. We have recently developed an analytic model for photoevaporation in a first-principles approach. It is of use to understand the basic physics operating in the vicinity of the wind-launching points. Our model naturally sets a gravitational-radius-like criterion, which is fundamentally different from the gravitational radius in origin. In this talk, I first present the analytic model. Then, the model aside, I introduce our recent numerical works regarding photoevaporation of protoplanetary disks hosted by intermediate-mass stars.
- 6/24 Hiroaki Kaneko (titech), Simultaneous evolution of rims around chondrules and accreting dust particles
- Chondrules are the major components of primitive meteorites, i.e. chondrites. Chondrules are often surrounded by fine-grained dust rims (FGRs). FGRs are visibly distinct from interstitial matrix, and their origin has been debated so far but still an unsolved problem. Nebular accretion scenario is one of the possible solutions to the origin of FGRs. In this scenario, chondrules floating in a nebula capture small dust grains and aggregates to form rims on their surface. Xiang et al. (2019) examined the initial structures of FGRs formed in the nebular accretion scenario. They reported that the morphology of accreting dust, i.e. monomer grains or aggregates, affects the initial structures of FGRs. It was revealed that monomer-accreting rims show compact and layered structures with grain size coarsening from the bottom to the top. However, they did not consider which type of dust can accumulate onto the surface of chondrules to form rims in a nebular setting. In a nebula, dust grains quickly collide and coagulate into aggregates. To solve this issue, we track the collisional growth of dust grains and their accretion onto chondrules simultaneously. We find that to form monomer-accreting rims, the maximum grains size in the monomer grain population must be > 1μm in a moderately turbulent nebula ( α < 10-3 ) and ~ 10μm in a weakly turbulent nebula ( α < 10-5 ). Moreover, the monomer grain size distribution with larger mass fraction in the large grains compared to that of Inter Stellar Medium might be necessary for layered structures in FGRs.